受付 No. 台帳 No. SS406000

○内空寸法 : 内 幅(B) 3000 mm

内 高(H) 3000 mm 長 さ(L) 1000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $3000 \times (H) 3000 \times (L) 1000 \text{ [mm]}$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材 (地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) : $\gamma w = 9.0 [kN/m^3]$

1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) : $\alpha = 1.000$

(上 : T'荷重 横断通行 1.4 活荷重 載)

(輪接地幅 a = 0.20m b = 0.50m)

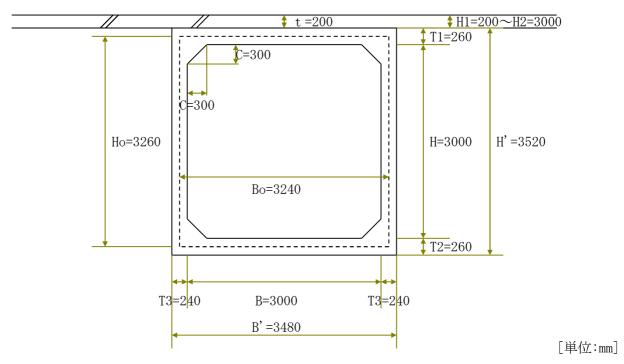
(側 載) : $Q = 10.0 [kN/m^2]$

1.5 衝擊係数 i = 0.300

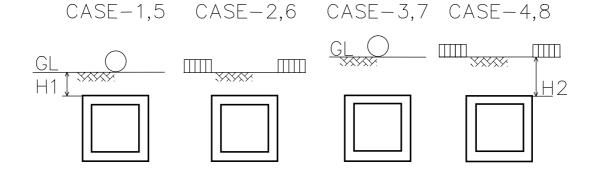
1.6 鉄筋かぶり 頂 版 底 版 側 壁

> (内側) 40 mm 40 mm 40 mm (外側) $40 \, \mathrm{mm}$ 40 mm 40 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$


1.8 許容応力度

鉄筋引張応力度 : σ sa = 160 [N/mm²] : $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度


コンクリート

設計基準強度 : $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 : $\sigma ca = 11.7 [N/mm^2]$ せん断応力度 $\tau a = 0.260 [N/mm^2]$

1.9 標準断面図

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

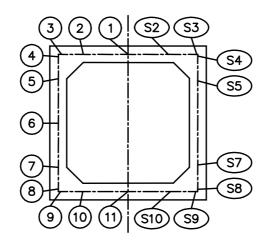
CASE 2, 4, 6, 8 は、荷重がカルバート側載の場合

また

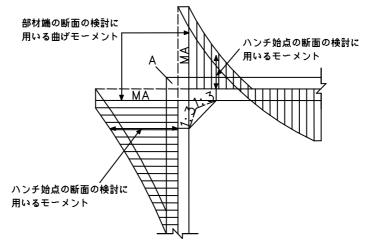
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

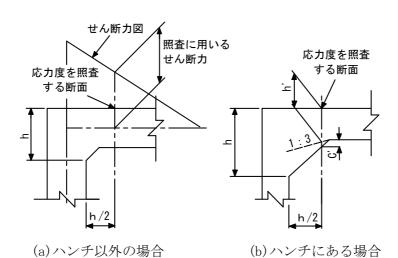
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 Cの 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

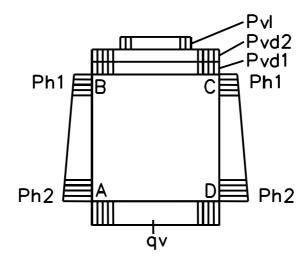
 $P vd1 = \gamma c \times T1 \qquad = 6.370 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 3.420 \text{ kN/m}^2$$


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 32.760 \text{ kN/m}^2$$

- (3) 活荷重
 - ① 輪分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
 - ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²
- (4) 底版反力

$$q v = P v d1 + P v d2 + \{P v 1 \times u + \gamma c \times (2 \times T 3 \times H_0 + 2 \times C^2)\} / B_0 = 50.326 \text{ kN/m}^2$$

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.279$$

 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.279$
 $\text{N1} = 2 + \alpha = 3.279, \quad \text{N2} = 2 + \beta = 3.279$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 44.025 kN·m

CBC =
$$\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$$
 = 43.577 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 18.620 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 13.423 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -11.633 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 12.743 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -29.143 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 29.143 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 27.275 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -27.275 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x = 55.807 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 49.530 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 61.398 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 36.895 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

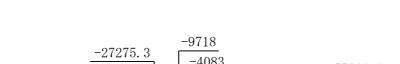
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 25.646 \text{ kN}$$

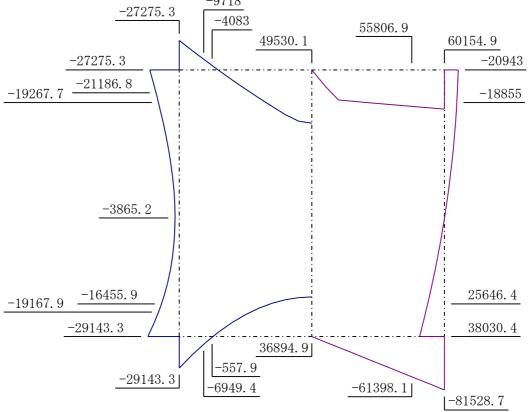
$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -18.855 \text{ kN}$$

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.449 m

$$\begin{array}{lll} Mmax &=& SAB \times x - Phd2 \times x^{2}/2 \\ &-& (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB \end{array} \qquad = \quad -3.865 \text{ kN} \cdot m \end{array}$$

			[/単位	位長]	
部材 照查	ī点	距離 1	曲げモーメント	せん断力	軸力
		x (m)	M(N*m)	S (N)	N (N)
3, S3 端	部	0. 120	-27275	60155	20943
頂版 2 ルン	チ始点	0.420	-9718	****	20943
S2 τ	点	0.400	-4083	55807	20943
1 中	央	1.620	49530	0	20943
9, S9 端	 部	0. 120	-29143	81529	38030
底版 10 ルン	チ始点	0.420	-6949	****	38030
S10 τ	点	0.400	-558	61398	38030
11 中	央	1.620	36895	0	38030
4, S4 上	 端部	3. 130	 -27275	-20943	60155
5 上	ハンチ点	2.830	-21187	****	62122
S5 上	τ点	2.860	-19268	-18855	62777
側壁6 中	間	1.449	-3865	0	72029
S7 下	τ点	0.400	-16456	25646	78906
7 下	ハンチ点	0.430	-19168	****	79562
8,88 下	端部	0.130	-29143	38030	81529

曲げモーメント(N·m) せん断力(N)

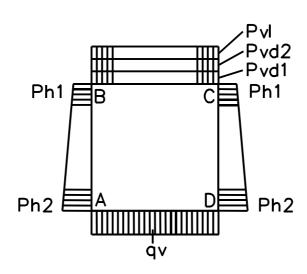
2.2.1 設計荷重 (CASE - 2)

(1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 6.370 \text{ kN/m}^2$$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2)\,\} & +P\,q \end{array} \\ = & 8.\,420\ kN/m^2 \\ P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2\!+\!Ho)\,\} & +P\,q \end{array} \\ = & 37.\,760\ kN/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

(4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 24.064 \text{ kN/m}^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.279 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.279 $\text{N1} = 2 + \alpha = 3.279, \quad \text{N2} = 2 + \beta = 3.279$
- ② 荷 重 項

$$CAD = q v \times B o^2 / 12$$
 = 21.051 kN·m

CBC =
$$\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$$
 = 9.509 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 23.048 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 17.851 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = 1.527 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = -3.009 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -23.004 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 23.004 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 13.359 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -13.359 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 13.261 \text{ kN}$

② 曲げモーメント

 $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 0.905 \text{ kN} \cdot \text{m}$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -22.619 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 8.573 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 34.182 \text{ kN}$$

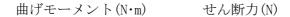
$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

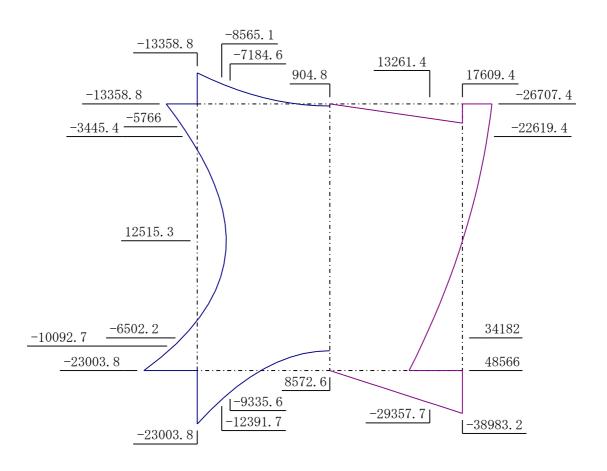
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = -22.619 kN$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.586 m


$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB$$
= 12.515 kN·m

SS406000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 //// 3 ///	0. 120 0. 420 0. 400 1. 620	-13359 -8565 -7185 905	17609 ****** 13261 0	26707 26707 26707 26707
底版	9, S9 端 部 10 ///チ始点 S10 τ 点 11 中 央	0. 120 0. 420 0. 400 1. 620	-23004 -12392 -9336 8573	38983 ****** 29358 0	48566 48566 48566 48566
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下ννf点 8, S8 下 端部	3. 130 2. 830 2. 860 1. 586 0. 400 0. 430 0. 130	-13359 -5766 -3445 12515 -6502 -10093 -23004	-26707 ****** -22619 0 34182 ****** 48566	17609 19576 20232 28585 36361 37016 38983

2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

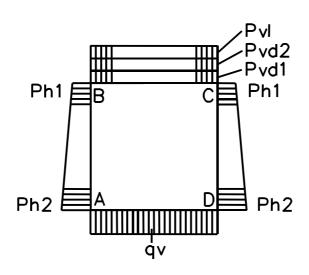
 $P vd1 = \gamma c \times T1 \qquad = 6.370 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} = 28.620 \text{ kN/m}^{2}$$


$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} = 57.960 \text{ kN/m}^{2}$$

(3) 活荷重

① 輪分布幅
$$u = a + 2 \times H2$$
 $= 6.200 \text{ m}$ $v = b + 2 \times H2$ $= 6.500 \text{ m}$ $= 117.000 \text{ kN}$ $= 13.724 \text{ kN/m}^2$

(4) 底版反力 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 88.188 kN/m^2$

[荷重図]

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.279 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.279 $\text{N1} = 2 + \alpha = 3.279$, $\text{N2} = 2 + \beta = 3.279$
- ② 荷 重 項

 $CAD = qv \times Bo^{2}/12 = 77.147 \text{ kN} \cdot \text{m}$ $CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^{2}\}/12 = 65.605 \text{ kN} \cdot \text{m}$ $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2)/60 = 40.938 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 35.741 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -15.236 \text{ kN} \cdot \text{m}$ $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 13.753 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -57.656 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 57.656 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 48.011 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -48.011 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 91.493 \text{ kN}$$

② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC = 50.397 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x$$
 = 107.589 kN

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 58.064 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

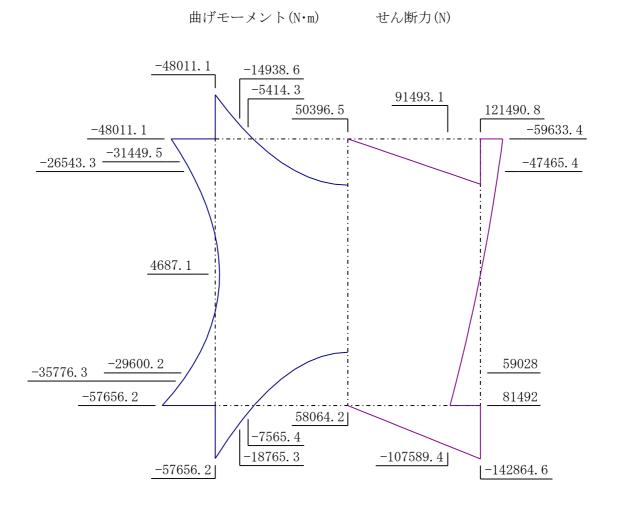
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 59.028 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB+MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -47.465 kN

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.606 m

$$\begin{array}{lll} M_{\text{max}} &=& S \, AB \times \, \mathbf{x} - P \, hd2 \times \, \mathbf{x}^{\, 2} / 2 \\ &-& (P \, hd1 - P \, hd2) \times \, \mathbf{x}^{\, 3} / \left(6 \times \, Ho \right) + MAB \end{array} \qquad = \qquad 4. \, 687 \, \, k \, N \cdot m \end{array}$$

SS406000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 ///f始点 S2 τ 点 1 中 央	0. 120 0. 420 0. 400 1. 620	-48011 -14939 -5414 50397	121491 ****** 91493 0	59633 59633 59633 59633
底版	9, S9 端 部 10 ////////////////////////////////////	0. 120 0. 420 0. 400 1. 620	-57656 -18765 -7565 58064	142865 ****** 107589 0	81492 81492 81492 81492
側壁	4, S4 上 端部 5 上 λ λ f 点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下 λ λ f 点 8, S8 下 端部	3. 130 2. 830 2. 860 1. 606 0. 400 0. 430 0. 130	-48011 -31450 -26543 4687 -29600 -35776 -57656	-59633 ****** -47465 0 59028 ******	121491 123458 124113 132335 140242 140898 142865

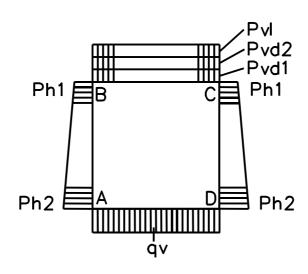
- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 6.370 \text{ kN/m}^2$$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.620 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 62.960 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 74.464 \text{ kN/m}^2$ [荷重図]

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.279$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.279$ $\text{N1} = 2 + \alpha = 3.279, \quad \text{N2} = 2 + \beta = 3.279$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 65.141 kN·m

CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$ = 53.599 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 45.366 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 40.169 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -8.026 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 6.543 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -54.874 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 54.874 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 45.229 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -45.229 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 $SXBC = (Pvd1+Pvd2+Pv1) \times Bo/2-(Pvd1+Pvd2+Pv1) \times x = 74.749 kN$
 - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 35.170 kN·m

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = 90.846 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 42.837 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

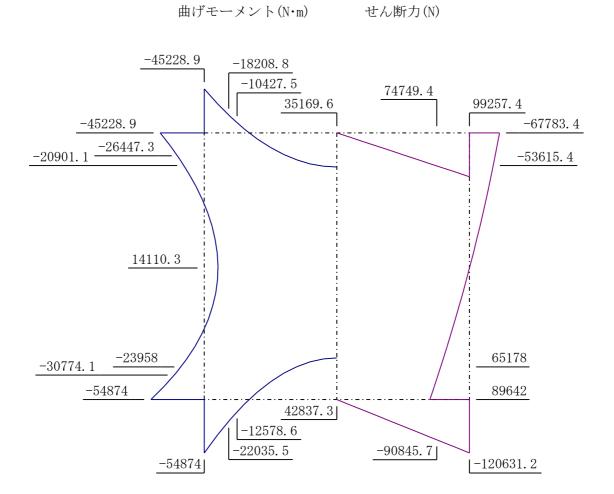
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 65.178 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $- (MAB + MBA)/Ho$
 $- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -53.615 kN

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.609 m

$$\begin{aligned} \mathsf{M}\mathsf{m}\mathsf{a}\mathsf{x} &= \mathsf{S}\,\mathsf{A}\mathsf{B}\times\mathsf{x} - \mathsf{P}\,\mathsf{h}\mathsf{d}2\times\mathsf{x}^{\,2}/2 \\ &- (\mathsf{P}\,\mathsf{h}\mathsf{d}1 - \mathsf{P}\,\mathsf{h}\mathsf{d}2)\times\mathsf{x}^{\,3}/(6\times\mathsf{H}\mathsf{o}) + \mathsf{M}\mathsf{A}\mathsf{B} \end{aligned} \qquad = 14.110 \ \mathsf{k}\,\mathsf{N}\cdot\mathsf{m}$$

SS406000

部材	照査点	距 離 x (m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3,S3 端 部	0. 120	-45229	99257	67783
頂版	2 ハンチ始点	0.420	-18209	*****	67783
	S2 τ 点	0.400	-10428	74749	67783
	1 中央	1.620	35170	0	67783
	 9,S9 端 部	0. 120	-54874	120631	89642
底版	10 パチ始点	0.420	-22036	*****	89642
	S10 τ 点	0.400	-12579	90846	89642
	11 中 央	1.620	42837	0	89642
	 4,S4 上 端部	3. 130	-45229	-67783	99257
	5 上ハンチ点	2.830	-26447	*****	101224
	S5 上 τ点	2.860	-20901	-53615	101880
側壁	6 中 間	1.609	14110	0	110082
	S7 下 τ 点	0.400	-23958	65178	118009
	7 下ハンチ点	0.430	-30774	*****	118664
	8,S8 下 端部	0. 130	-54874	89642	120631

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

項版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	$M \ (k N \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-48. 011	59. 633	80. 51	14. 00	56. 360	3
頂版	ハンチ始点	-18. 209	67. 783	26.86	9.00	24. 309	4
	中 央	49. 530	20. 943	236. 50	9.00	51.415	1
	端部	-57. 656	81. 492	70. 75	14. 00	69.065	3
底版	ハンチ始点	-22. 035	89. 642	24. 58	9.00	30. 103	4
	中 央	58.064	81. 492	71. 25	9.00	65. 398	3
	上端部	-45. 229	99. 257	45. 57	13.00	58. 132	4
	上ハンチ点	-31. 450	123. 458	25. 47	8.00	41. 326	3
側壁	中間	12.515	28. 585	43.78	8.00	14.802	2
	下ハンチ点	-35. 776	140. 898	25. 39	8.00	47. 048	3
	下端部	-57. 656	142.865	40. 36	13.00	76. 229	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$

 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$

$$d = c1 \times \sqrt{(Ms / b)}$$
 $h = d + d' < T$

$$h = d + d' < T$$

ここに、 M : 軸力を考慮した曲げモーメント $(kN \cdot m/m)$ b : 単位長 (cm) d': 鉄筋かぶり (cm) h : 必要部材厚 (cm) n : ヤング係数比 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$

点	Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
	$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
端部	56. 360	14. 94	18. 94	36. 00	8. 438
ハンチ始点	24. 309	9.81	13. 81	26. 00	3. 365
中 央	51.415	14. 27	18. 27	26.00	15.396
端部	69. 065	16. 53	20. 53	36. 00	9.960
心が始点	30. 103	10. 92	14. 92	26. 00	3. 903
中央	65. 398	16.09	20.09	26. 00	16. 467
上端部	58. 132	15. 17	19. 17	34. 00	7. 283
上ハンチ点	41. 326	12. 79	16. 79	24. 00	7. 029
中間	14.802	7.65	11.65	24.00	3. 240
下ハンチ点	47. 048	13. 65	17. 65	24. 00	8. 110
下端部	76. 229	17. 37	21. 37	34. 00	9. 003
	端 部 nvf始点 中端 nvf始点 中端 中端 中端 中端 中端 由 中端 由 hvf点 中端 由 hvf点 即	端部 56.360 パチ始点 24.309 中央 51.415 端部 69.065 パンチ始点 30.103 中央 65.398 上端部 58.132 上パチ点 41.326 中間 14.802 下パチ点 47.048	端部 56.360 14.94 パチ始点 24.309 9.81 中央 51.415 14.27 端部 69.065 16.53 パチ始点 30.103 10.92 中央 65.398 16.09 上端部 58.132 15.17 上パチ点 41.326 12.79 中間 14.802 7.65 下パチ点 47.048 13.65	(kN・m/m) d (cm) d+d'(cm) 端部 56.360 14.94 18.94 18.94 18.94 18.94 18.94 18.94 19.45 1	端部 56.360 14.94 18.94 36.00 パチ始点 24.309 9.81 13.81 26.00 中央 51.415 14.27 18.27 26.00 端部 69.065 16.53 20.53 36.00 パチ始点 30.103 10.92 14.92 26.00 中央 65.398 16.09 20.09 26.00 上端部 58.132 15.17 19.17 34.00 上パチ点 41.326 12.79 16.79 24.00 中間 14.802 7.65 11.65 24.00 下パチ点 47.048 13.65 17.65 24.00 下端部 76.229 17.37 21.37 34.00

d+d' < T CHECK OK

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\sigma c = N / \{b \times x / 2 - n \times As / x (c + T / 2 - x)\}$$

$$\sigma s = n \times \sigma c / x \times (c + T / 2 - x)$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 19 - 4
 D 16 - 8
 D 19 - 4
 D 16 - 8
 D 13 - 8
 D 16 - 8

 D 16 - 4
 D 0 - 0
 D 16 - 4
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実 応	力	度(N/mm²)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σ s'
	端部	100.00	15.888	11.726	3.42	88.7	0.0
頂版	ハンチ始点	100.00	15.888	10.590	2.49	40.2	0.0
	中 央	100.00	19. 404	9.042	5.99	128.8	0.0
	端部	100.00	15.888	11.949	4. 13	103. 9	0.0
底版	ハンチ始点	100.00	15.888	10.842	3.02	46.6	0.0
	中 央	100.00	19. 404	9.677	7.20	137.5	0.0
	上端部	100.00	15.888	12. 299	3.65	78.8	0.0
	上ハンチ点	100.00	15.888	9.838	5.02	77.9	0.0
側壁	中間	100.00	10. 136	7.558	2. 24	55.3	0.0
	下ハンチ点	100.00	15.888	9.845	5.72	88.4	0.0
	下端部	100.00	15.888	12.650	4.67	96. 2	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	55. 807	13. 261	91. 493	74. 749				
頂版	M			-5. 414					
τ点	N			59. 633					
	最大			0					
	S	61.398	29. 358	107. 589	90.846				
底版	M			-7. 565					
τ点	N			81. 492					
	最大			0					
	S	-18.855	-22.619	-47. 465	-53. 615				
側壁上	M				-20. 901				
τ 点	N				101.880				
	最大				0				
	S	25. 646	34. 182	59. 028	65. 178				
側壁下 τ 点	M				-23. 958				
	N				118.009				
	最大				0				

ここに、S: せん断力(kN)、M:モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$au = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot au$$
 ここに、 $S : せん断力$ (kN) $d : 有効高さ (cm)$ $b : 部材幅 (cm)$

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1.2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $t \in \mathbb{Z}$ $1 \leq Cn \leq 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m) N:断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張鉄筋		鉄筋比	Cpt
	Т	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0. 267	0.040	0. 226667	1.400	D16-8	15. 888	0.701	1.321
底版 τ 点	0. 267	0.040	0. 226667	1.400	D16-8	15.888	0.701	1.321
側壁上τ点	0. 250	0.040	0. 210000	1.400	D16-8	15.888	0.757	1.354
側壁下 τ 点	0.250	0.040	0. 210000	1.400	D16-8	15.888	0.757	1.354

補正係数③を求める。

照査位置	M	N	Ac	Ic	у	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版τ点	-5. 414	59. 633	0. 26700	0.001586	0. 13350	2. 653	1.490
底版 τ 点	-7. 565	81. 492	0. 26700	0.001586	0. 13350	3. 626	1.479
側壁上 τ 点	-20. 901	101.880	0. 25000	0.001302	0. 12500	4. 245	1. 203
側壁下 τ 点	-23. 958	118.009	0. 25000	0.001302	0. 12500	4. 917	1. 205

補正した許容せん断応力度

照査位置	τα	補正係数			補正
		Се	Cpt	Cn	τа
頂版 τ 点	0. 260	1.400	1. 321	1.490	0. 717
底版 τ 点	0.260	1.400	1. 321	1.479	0.711
側壁上 τ 点	0. 260	1.400	1. 354	1. 203	0. 593
側壁下 τ 点	0.260	1.400	1.354	1. 205	0.594

せん断応力度の照査

照査位置	せん断力	応力度	補正	判定			
	S	τ	τа				
	(kN)	(N/mm2)	(N/mm2)				
頂版 τ 点	91. 493	0.404	0.717	OK			
底版 τ 点	107. 589	0. 475	0. 711	OK			
側壁上τ点	53. 615	0. 255	0. 593	OK			
側壁下 τ 点	65. 178	0.310	0. 594	OK			

以上