

○内空寸法 : 内 幅(B) 2500 mm

内 高(H) 2500 mm 長 さ(L) 1500 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $2500 \times (H) 2500 \times (L) 1500 \text{ [mm]}$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) $v = 9.0 [kN/m^3]$

1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) $\alpha = 1.000$

(上 : T'荷重 横断通行 1.4 活荷重 載)

(輪接地幅 a = 0.20m b = 0.50m)

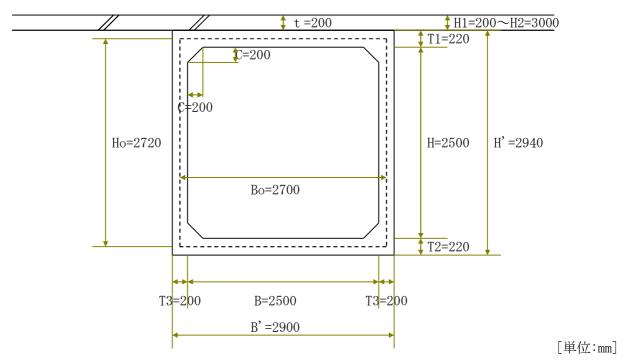
(側 載) : $Q = 10.0 [kN/m^2]$

i = 0.3001.5 衝擊係数

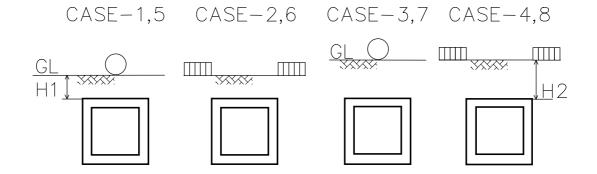
1.6 鉄筋かぶり : 頂 版 底 版 側 壁

> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$


1.8 許容応力度

鉄筋引張応力度 : $\sigma \, \text{sa} = 160 \, [\, \text{N/mm}^2\,]$: $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度


コンクリート

設計基準強度 : $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 : $\sigma ca = 11.7 [N/mm^2]$ せん断応力度 $\tau a = 0.260 [N/mm^2]$

1.9 標準断面図

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

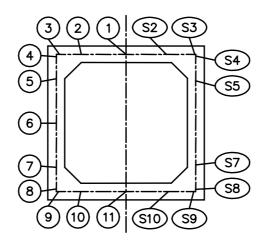
CASE 2, 4, 6, 8 は、荷重がカルバート側載の場合

また

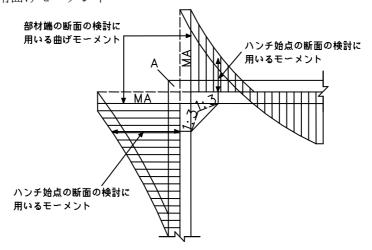
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

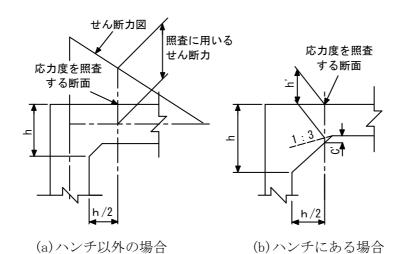
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 Cの 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 5.390 \text{ kN/m}^2$

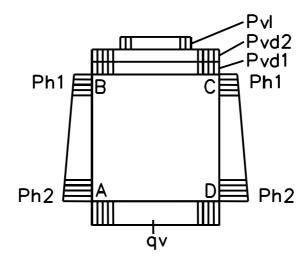
- (2) 土圧
 - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 3.240 \text{ kN/m}^2$$

$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$


$$= 27.720 \text{ kN/m}^2$$

(3) 活荷重

- ① 輸分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
- ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²
- (4) 底版反力

$$q v = P vd1 + P vd2 + \{P v1 \times u + \gamma c \times (2 \times T3 \times Ho + 2 \times C^{2})\} / Bo = 52.004 \text{ kN/m}^{2}$$

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.341$$

 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.341$
 $\text{N1} = 2 + \alpha = 3.341, \quad \text{N2} = 2 + \beta = 3.341$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 31.592 kN·m

CBC = $\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \\ \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$ = 34.254 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 11.053 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 8.035 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -9.333 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 10.642 \text{ kN} \cdot \text{m}$$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -19.078 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 19.078 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 19.985 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC$ = -19.985 kN·m

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\} / 2 - (Pvd1 + Pvd2) \times x = 52.831 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 40.082 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 54.084 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 28.311 kN \cdot m$$

- (3) 側壁
 - ① せん断力

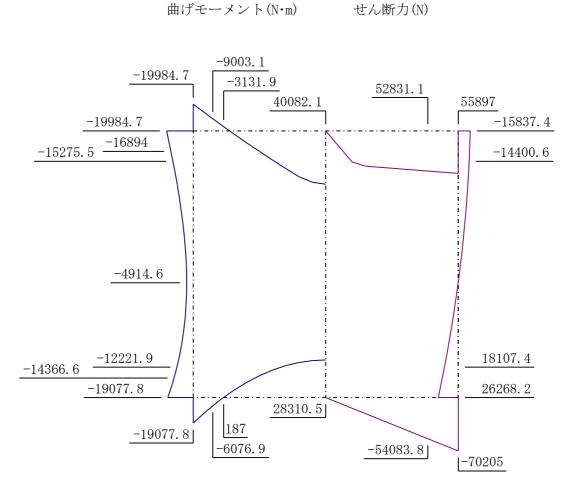
$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 18.107 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -14.401 kN


② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho) = 0$$

上式を用いて x を求めると。 x = 1.170 m

$$\begin{aligned} \mathsf{Mmax} &= \mathsf{S}\,\mathsf{AB} \times \mathbf{x} - \mathsf{P}\,\mathsf{hd2} \times \mathbf{x}^{\,2} / 2 \\ &- (\mathsf{P}\,\mathsf{hd1} - \mathsf{P}\,\mathsf{hd2}) \times \mathbf{x}^{\,3} / (6 \times \mathsf{Ho}) + \mathsf{MAB} \end{aligned} \qquad = -4.915 \; \mathsf{kN} \cdot \mathsf{m}$$

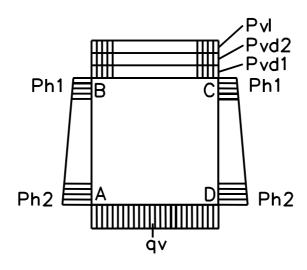
		[/単	位長]	
部材 照査点	距離	曲げモーメント	せん断力	軸力
	x (m)	M (N*m)	S (N)	N (N)
3,S3 端 部	0. 100	-19985	55897	15837
頂版 2 ハンチ始点	0.300	-9003	*****	15837
S2 τ 点	0.310	-3132	52831	15837
1 中 央	1. 350	40082	0	15837
 9, S9 端 部	0. 100	-19078	70205	26268
底版 10 パチ始点	0.300	-6077	*****	26268
S10 τ 点	0.310	187	54084	26268
11 中 央	1. 350	28311	0	26268
 4, S4 上 端部	2. 610	-19985	-15837	55897
5 上ハンチ点	2.410	-16894	*****	56949
S5 上 τ 点	2.410	-15276	-14401	57528
側壁6 中 間	1. 170	-4915	0	64050
S7 下 τ 点	0.310	-12222	18107	68574
7 下ハンチ点	0.310	-14367	*****	69153
8, S8 下 端部	0. 110	-19078	26268	70205

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1$$
 = 5.390 kN/m²

- (2) 十圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2)\,\} & +P\,q \end{array} \\ = & 8.\,240\ kN/m^2 \\ P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2\!+\!Ho)\,\} & +P\,q \end{array} \\ = & 32.\,720\ kN/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 20.489 \text{ kN/m}^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.341$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.341$ $\text{N1} = 2 + \alpha = 3.341, \quad \text{N2} = 2 + \beta = 3.341$
- ② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 12.447 kN·m

CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$ = 6.008 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 14.136 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 11.117 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = 1.058 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1) = -1.846 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -13.866 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 13.866 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 8.483 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -8.483 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 10.286 \text{ kN}$

② 曲げモーメント

 $M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$ = 0.529 kN·m

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -17.338 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 4.805 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 25.670 \text{ kN}$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

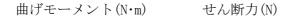
$$- (MAB + MBA)/Ho$$

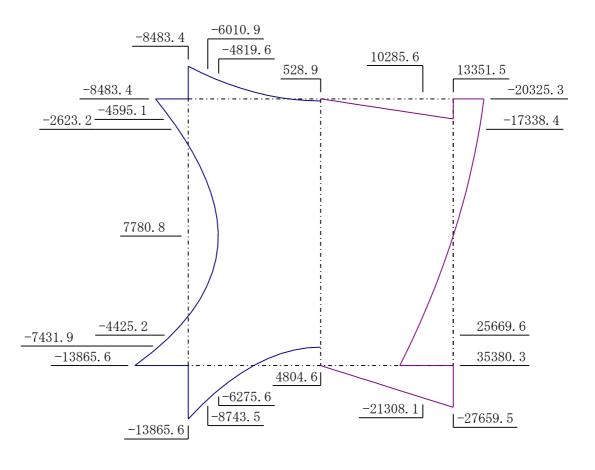
$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

$$= -17.338 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.321 m


$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB = 7.781 \text{ kN} \cdot \text{m}$$

SM410000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 100	-8483	13352	20325
	2 ///f始点	0. 300	-6011	******	20325
	S2 τ 点	0. 310	-4820	10286	20325
	1 中 央	1. 350	529	0	20325
底版	9, S9 端 部	0. 100	-13866	27660	35380
	10 ///f始点	0. 300	-8744	******	35380
	S10 τ 点	0. 310	-6276	21308	35380
	11 中 央	1. 350	4805	0	35380
側壁	4, S4 上 端部 5 上/ンチ点 S5 上 τ点 6 中 間 S7 下 τ点 7 下/ンチ点 8, S8 下 端部	2. 610 2. 410 2. 410 1. 321 0. 310 0. 310 0. 110	-8483 -4595 -2623 7781 -4425 -7432 -13866	-20325 ****** -17338 0 25670 ****** 35380	13352 14404 14982 20711 26029 26607 27660

 $= 13.724 \text{ kN/m}^2$

2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

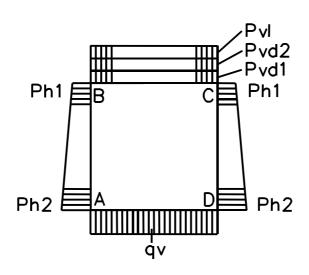
 $P vd1 = \gamma c \times T1 \qquad = 5.390 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} = 28.440 \text{ kN/m}^{2}$$


$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} = 52.920 \text{ kN/m}^{2}$$

(3) 活荷重

- ① 輪分布幅 $u = a + 2 \times H2$ = 6.200 m $v = b + 2 \times H2$ = 6.500 m = 6.500 m = 117.000 kN
- (4) 底版反力 $q \, v = P \, v d1 + P \, v d2 + P \, v 1 + \gamma \, c \times (2 \times T \, 3 \times Ho + 2 \times C^2) / Bo \qquad = \quad 84.613 \, \, k \, N/m^2$

 $Pv1 = 2 \times P1/2.75/u$

[荷重図]

 $= 44.964 \text{ kN} \cdot \text{m}$

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

 $CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.341 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.341 $\text{N1} = 2 + \alpha = 3.341, \quad \text{N2} = 2 + \beta = 3.341$
- ② 荷 重 項

$$CAD = q v \times B o^2 / 12$$
 = 51.402 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 26.590 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 23.571 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -10.263 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 9.475 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -37.641 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 37.641 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 32.259 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -32.259 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 76.975 \text{ kN}$$

② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 35. 187 kN·m

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 87.997 kN$$

② 曲げモーメント

$$M_{\text{max}} = q_{\text{V}} \times B_{\text{O}}^2 / 8 - M_{\text{AD}}$$
 = 39.463 kN·m

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

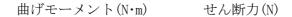
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 46.880 \text{ kN}$$

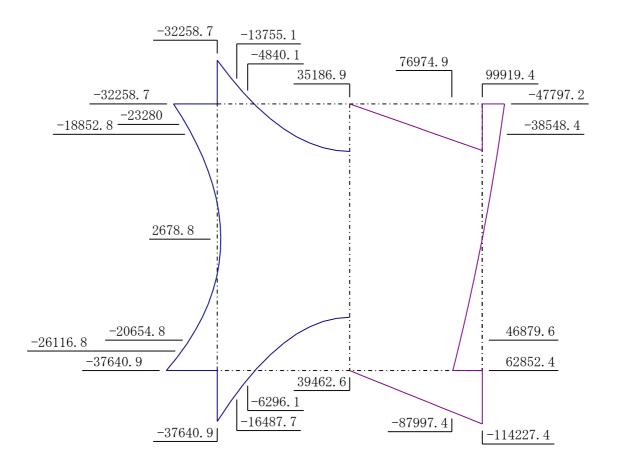
$$S XBA = P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- P hd2 \times x + (P hd2 - P hd1) \times x^{2}/(2 \times Ho) = -38.548 \text{ kN}$$

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.340 m

$$\begin{array}{lll} M_{\text{max}} &=& S \, AB \times \, \mathbf{x} - P \, \text{hd2} \times \, \mathbf{x}^{\, 2} / 2 \\ &-& (P \, \text{hd1} - P \, \text{hd2}) \times \, \mathbf{x}^{\, 3} / \left(6 \times \, \text{Ho} \right) + MAB \end{array} \qquad = \quad 2. \, 679 \, \, \text{kN} \cdot \text{m} \end{array}$$

SM410000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 100	-32259	99919	47797
	2 ///f始点	0. 300	-13755	******	47797
	S2 τ 点	0. 310	-4840	76975	47797
	1 中 央	1. 350	35187	0	47797
底版	9, S9 端 部	0. 100	-37641	114227	62852
	10 ///f始点	0. 300	-16488	******	62852
	S10 τ 点	0. 310	-6296	87997	62852
	11 中 央	1. 350	39463	0	62852
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ点 6 中 間 S7 下 τ点 7 下ννf点 8, S8 下 端部	2. 610 2. 410 2. 410 1. 340 0. 310 0. 310 0. 110	-32259 -23280 -18853 2679 -20655 -26117 -37641	-47797 ****** -38548 0 46880 ****** 62852	99919 100971 101550 107179 112597 113175 114227

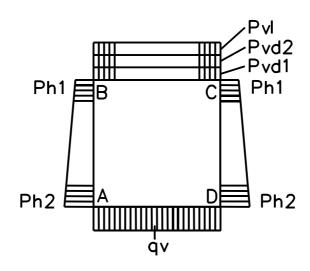
- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

$$P vd1 = \gamma c \times T1$$
 = 5.390 kN/m²

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.440 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 57.920 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 70.889 \text{ kN/m}^2$ [荷重図]

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.341$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.341$ $\text{N1} = 2 + \alpha = 3.341, \quad \text{N2} = 2 + \beta = 3.341$
- ② 荷 重 項

$$CAD = q v \times B o^2 / 12$$
 = 43.065 kN·m

CBC =
$$\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$$
 = 36.626 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 29.673 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 26.654 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -5.385 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 4.597 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -35.845 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 35.845 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 30.463 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -30.463 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 $SXBC = (Pvd1+Pvd2+Pv1) \times Bo/2-(Pvd1+Pvd2+Pv1) \times x = 62.702 kN$
 - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 24.477 kN·m

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 73.724 \text{ kN}$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 28.752 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 52.130 \text{ kN}$$

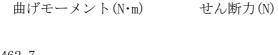
S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

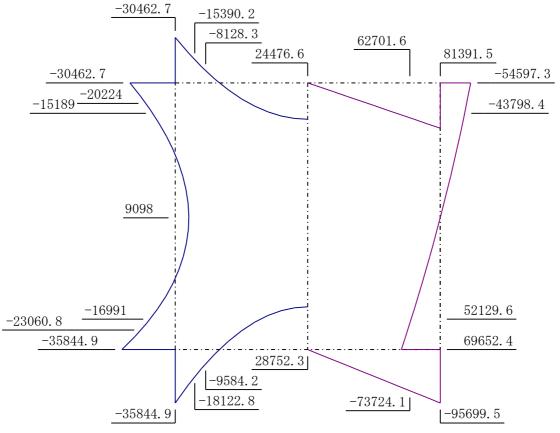
 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -43.798 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.343 m


$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$


$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= 9.098 \text{ kN} \cdot \text{m}$$

SM410000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 //νf始点 S2 τ 点 1 中 央	0. 100 0. 300 0. 310 1. 350	-30463 -15390 -8128 24477	81392 ****** 62702	54597 54597 54597 54597
底版	9, S9 端 部 10 ///f始点 S10 τ 点 11 中 央	0. 100 0. 300 0. 310 1. 350	-35845 -18123 -9584 28752	95700 ****** 73724 0	69652 69652 69652 69652
側壁	4, S4 上 端部 5 上/ンチ点 S5 上 τ点 6 中 間 S7 下 τ点 7 下/ンチ点 8, S8 下端部	2. 610 2. 410 2. 410 1. 343 0. 310 0. 310 0. 110	-30463 -20224 -15189 9098 -16991 -23061 -35845	-54597 ***** -43798 0 52130 ****** 69652	81392 82444 83022 88635 94069 94647 95700

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

項版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	$M \ (k N \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-32. 259	47. 797	67. 49	10.83	37. 437	3
頂版	ハンチ始点	-15. 390	54. 597	28. 19	7. 50	19. 485	4
	中 央	40.082	15.837	253. 09	7. 50	41. 270	1
	端部	-37. 641	62. 852	59. 89	10.83	44. 450	3
底版	ハンチ始点	-18. 123	69. 652	26. 02	7. 50	23. 347	4
	中 央	39. 463	62.852	62.79	7. 50	44. 177	3
	上端部	-30. 463	81. 391	37. 43	9.83	38. 466	4
	上心疗点	-23. 280	100. 971	23. 06	6. 50	29.843	3
側壁	中間	7. 781	20.711	37. 57	6.50	9. 127	2
	下心疗点	-26. 117	113. 175	23. 08	6. 50	33. 473	3
	下端部	-37. 641	114. 227	32. 95	9.83		3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

ここに、

4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$

 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$

$$d = c1 \times \sqrt{(Ms / b)}$$
 $h = d + d' < T$

b : 単位長 (cm) d' : 鉄筋かぶり (cm) h : 必要部材厚 (cm) n : ヤング係数比 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$

部材	点	Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
	端部	37. 437	12. 17	15. 67	28. 67	7. 322
頂版	ハンチ始点	19. 485	8. 78	12. 28	22. 00	3. 874
	中 央	41. 270	12.78	16. 28	22.00	15.076
	端部	44. 450	13. 26	16. 76	28. 67	8. 415
底版	ハンチ始点	23. 347	9. 61	13. 11	22. 00	4. 454
	中央	44. 177	13. 22	16. 72	22. 00	13. 341
	上端部	38. 466	12. 34	15.84	26. 67	6. 529
	上ハンチ点	29. 843	10.87	14. 37	20.00	6. 641
側壁	中間	9. 127	6.01	9. 51	20.00	2.449
	下ハンチ点	33. 473	11. 51	15. 01	20.00	7. 554
	下端部	48. 873	13. 91	17. 41	26. 67	7. 808
				1 1 1 1 / /	· T	CHECK OF

 $\mathrm{d}+\mathrm{d}$ ' < T CHECK OK

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\begin{array}{l} \sigma\,c\,=\,N\,\,/\,\,\{b\,\,\times\,\,x\,\,/\,\,2\,-\,\,n\,\,\times\,\,A\,s\,\,/\,\,x\,\,(\,c\,\,+\,\,T\,\,/\,\,2\,-\,\,x\,)\}\\ \sigma\,s\,=\,n\,\,\times\,\,\sigma\,c\,\,/\,\,x\,\,\times\,\,(\,c\,\,+\,\,T\,\,/\,\,2\,\,-\,\,x\,) \end{array}$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 16 - 12
 D 16 - 6
 D 16 - 12
 D 16 - 6
 D 13 - 6
 D 16 - 6

 D 0 - 0
 D 13 - 6
 D 0 - 0
 D 13 - 6
 D 10 - 6
 D 13 - 6

部材	点	部材幅	使用鉄筋量	X	実 応	力	度(N/mm²)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σ s'
	端部	100.00	13. 012	9. 289	3.65	93.6	0.0
頂版	ハンチ始点	100.00	13.012	8.393	2.96	53.4	0.0
	中 央	100.00	15.888	7.481	6.89	152.3	0.0
	端部	100.00	13. 012	9.441	4. 28	106.8	0.0
底版	ハンチ始点	100.00	13.012	8.541	3.49	61.1	0.0
	中 央	100.00	15.888	8.027	6.96	136. 1	0.0
	上端部	100.00	13. 012	9. 583	4.02	85. 5	0.0
	上ハンチ点	100.00	13.012	7.934	5. 43	87.9	0.0
側壁	中間	100.00	7. 921	6.074	2.08	53. 5	0.0
	下ハンチ点	100.00	13.012	7. 932	6.09	98.7	0.0
	下端部	100.00	13.012	9.853	4.99	101.1	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	52.831	10. 286	76. 975	62. 702				
頂版 τ 点	M			-4.840					
	N			47. 797					
	最大			0					
	S	54. 084	21. 308	87. 997	73. 724				
底版	M			-6. 296					
τ点	N			62.852					
	最大			0					
	S	-14. 401	-17. 338	-38. 548	-43. 798				
側壁上	M				-15. 189				
τ 点	N				83. 022				
	最大				0				
	S	18. 107	25. 670	46.880	52. 130				
側壁下	M				-16. 991				
τ点	N				94. 069				
	最大				0				

ここに、S: せん断力(kN)、M:モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$\tau = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot \tau a$$
 ここに、 S : せん断力 (kN) d : 有効高さ (cm) b : 部材幅 (cm)

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1. 2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $ttll_1 \le Cn \le 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m)

N: 断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張	美鉄筋	鉄筋比	Cpt
	T	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版τ点	0. 220	0.035	0. 185000	1.400	D16-4	13. 012	0.703	1. 322
					D13-4			
底版 τ 点	0. 220	0.035	0. 185000	1.400	D16-4	13. 012	0.703	1. 322
					D13-4			
側壁上τ点	0.200	0.035	0. 165000	1.400	D16-4	13. 012	0.789	1. 373
					D13-4			
側壁下τ点	0.200	0.035	0. 165000	1.400	D16-4	13. 012	0.789	1. 373
					D13-4			

補正係数③を求める。

照査位置	M	N	Ac	Ic	У	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版 τ 点	-4.840	47. 797	0. 22000	0.000887	0.11000	1. 752	1. 362
底版 τ 点	-6. 296	62.852	0. 22000	0.000887	0.11000	2. 304	1.366
側壁上 τ 点	-15. 189	83. 022	0. 20000	0.000667	0.10000	2. 769	1. 182
側壁下 τ 点	-16. 991	94. 069	0.20000	0.000667	0.10000	3. 137	1. 185

補正した許容せん断応力度

照査位置	τа	補正係数			補正
		Се	Cpt	Cn	τа
頂版 τ 点	0. 260	1.400	1. 322	1. 362	0. 655
底版 τ 点	0. 260	1.400	1. 322	1. 366	0. 657
側壁上 τ 点	0. 260	1.400	1. 373	1. 182	0. 591
側壁下 τ 点	0.260	1.400	1. 373	1. 185	0. 592

せん断応力度の照査

照査位置	せん断力	応力度	補正	判定
	S	τ	τа	
	(kN)	(N/mm2)	(N/mm2)	
頂版 τ 点	76. 975	0.416	0.655	OK
底版 τ 点	87. 997	0. 476	0.657	OK
側壁上 τ 点	43. 798	0. 265	0. 591	OK
側壁下 τ 点	52. 130	0.316	0. 592	OK