受付 No. 台帳 No. SM401000

	プ	レキ	ヤ	ス	}	
	ボッ	クス	カル	バー	٢	
	設	計	計	算	書	
						П

○内空寸法 : 内 幅(B) 2200 mm

内 高(H) 1800 mm 長 さ(L) 1500 mm

○設計条件 : 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千 葉 窯 業 株 式 会 社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $2200 \times (H) 1800 \times (L) 1500 [mm]$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) $v = 9.0 [kN/m^3]$

1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) $\alpha = 1.000$

(上 : T'荷重 横断通行 1.4 活荷重 載)

(輪接地幅 a = 0.20m b = 0.50m)

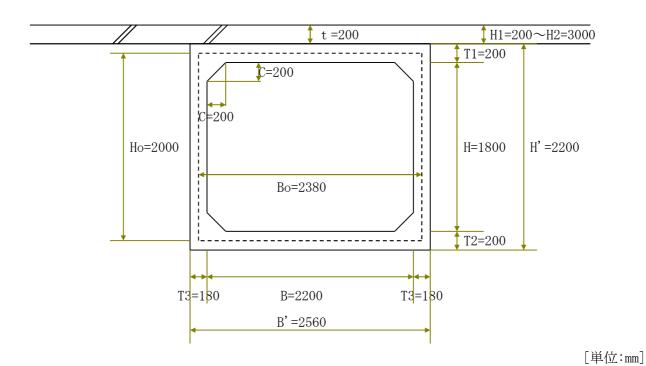
(側 載) : $Q = 10.0 [kN/m^2]$

1.5 衝擊係数 i = 0.300

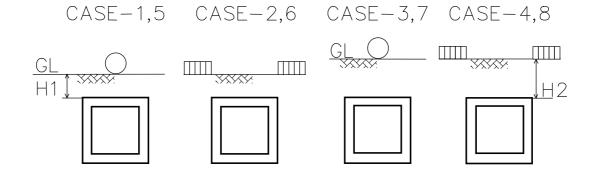
1.6 鉄筋かぶり : 頂 版 底 版 側 壁

> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$


1.8 許容応力度

鉄筋引張応力度 : $\sigma \, \text{sa} = 160 \, [\, \text{N/mm}^2\,]$: $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度


コンクリート

設計基準強度 : $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 : $\sigma ca = 11.7 [N/mm^2]$ せん断応力度 $\tau a = 0.260 [N/mm^2]$

1.9 標準断面図

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

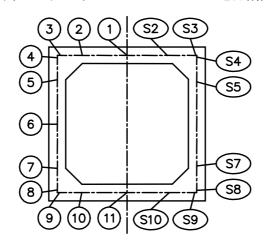
CASE 2, 4, 6, 8は、荷重がカルバート側載の場合

また

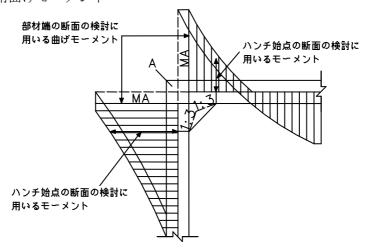
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

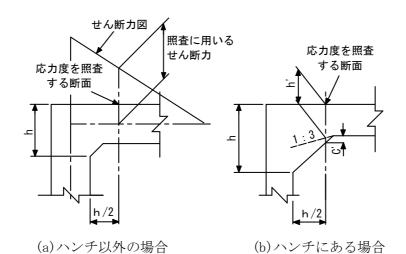
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 C'の 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$

- (2) 土圧
 - 鉛直土圧

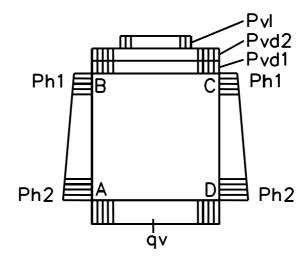
$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 3.150 \text{ kN/m}^2$$

$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 21.150 \text{ kN/m}^2$$


(3) 活荷重

- ① 輪分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
- ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²

(4) 底版反力

$$q v = P vd1 + P vd2 + \{P v1 \times u + \gamma c \times (2 \times T3 \times Ho + 2 \times C^{2})\} / Bo = 53.388 \text{ kN/m}^{2}$$

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 1.153
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.153
 $\text{N1} = 2 + \alpha = 3.153, \quad \text{N2} = 2 + \beta = 3.153$

② 荷 重 項

 $CAD = q v \times B o^{2}/12$ = 25. 201 kN·m

CBC =
$$\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$$
 = 29.215 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 4.650 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 3.450 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -10.130 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 11.385 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -13.524 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 13.524 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 16.091 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -16.091 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x = 51.005 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 34.812 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 48.049 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 24.277 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

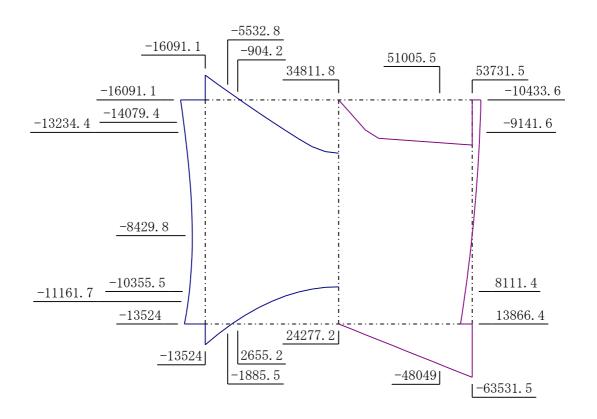
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 8.111 kN$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -9.142 kN

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho) = 0$$

上式を用いて x を求めると。 x = 0.788 m

$$\begin{array}{lll} \text{Mmax} &=& \text{S AB} \times \text{x} - \text{P hd2} \times \text{x}^{2} / 2 \\ &-& (\text{P hd1} - \text{P hd2}) \times \text{x}^{3} / (6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = & -8.430 \text{ kN} \cdot \text{m} \end{array}$$

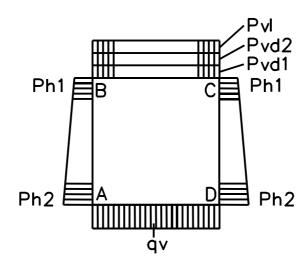
					[/単位長]						
部材	ţ ţ	照查点	Ħ.	距 x(m)	曲げモーメン I M (N*m)		軸 力 N(N)				
				A (III)							
	3, S3	端	部	0.090	-16091	53732	10434				
頂版	2	ハンチま	始点	0. 290	-5533	*****	10434				
	S2	τ	点	0.290	-904	51006	10434				
	1	中	央	1. 190	34812	0	10434				
	9, S9	端	 部	0. 090	-13524	63532	13866				
底版	10	ハンチを	始点	0.290	-1886	*****	13866				
	S10	τ	点	0. 290	2655	48049	13866				
	11	中	央	1. 190	24277	0	13866				
	4, S4	上 ゥ	 '' ''	1. 900	-16091	-10434	53732				
	5	上心	チ点	1.700	-14079	*****	54712				
	S5	上	τ点	1.710	-13234	-9142	55153				
側壁	6	中	間	0.788	-8430	0	59670				
	S7	下	τ点	0. 290	-10356	8111	62111				
	7	下心	チ点	0.300	-11162	*****	62552				
	8, S8	下力	端部	0. 100	-13524	13866	63532				

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$$

- (2) 十圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²


② 水平土圧

$$\begin{array}{lll} P\,hd1 = K\,a \times & \{ \, \gamma\,\,a \times t + \,\gamma\,\,b \times \,t\,\,b \\ & + \,\gamma\,\,s \times (H\,1 - t - t\,\,b + T\,1/2) \,\} & + P\,q \end{array} \\ = & 8.\,150\,\,k\,N/m^2 \\ P\,hd2 = K\,a \times & \{ \,\gamma\,\,a \times t + \,\gamma\,\,b \times \,t\,\,b \\ & + \,\gamma\,\,s \times (H\,1 - t - t\,\,b + T\,1/2 + H\,o) \,\} & + P\,q \end{array} \\ = & 26.\,150\,\,k\,N/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 17.635 \text{ kN/m}^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.153$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.153$ $\text{N1} = 2 + \alpha = 3.153, \quad \text{N2} = 2 + \beta = 3.153$
- ② 荷 重 項

$$CAD = q v \times B o^2 / 12$$
 = 8.324 kN·m

CBC =
$$\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$$
 = 4.437 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 6.317 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 5.117 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -0.632 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = -0.015 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -7.596 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 7.596 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 4.455 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -4.455 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 8.460 \text{ kN}$

② 曲げモーメント

 $M_{max} = (P_{vd1} + P_{vd2}) \times B_0^2 / 8 + P_{v1} \times B_0^2 / 8 + MBC$ = 2.201 kN·m

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -9.837 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 4.891 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

$$= 14.516 \text{ kN}$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

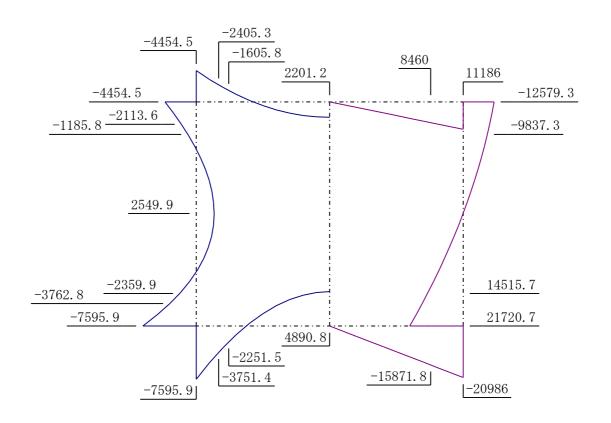
$$= -9.837 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.004 m

$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$


$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= 2.550 \text{ kN} \cdot \text{m}$$

SM401000

部材	照査点	距 離 x (m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 090	-4455	11186	12579
	2 //νf始点	0. 290	-2405	*****	12579
	S2 τ 点	0. 290	-1606	8460	12579
	1 中 央	1. 190	2201	0	12579
底版	9, S9 端 部	0. 090	-7596	20986	21721
	10 ///f始点	0. 290	-3751	*****	21721
	S10 τ 点	0. 290	-2252	15872	21721
	11 中 央	1. 190	4891	0	21721
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ点 6 中 間 S7 下 τ点 7 下ννf点 8, S8 下 端部	1. 900 1. 700 1. 710 1. 004 0. 290 0. 300 0. 100	-4455 -2114 -1186 2550 -2360 -3763 -7596	-12579 ****** -9837 0 14516 ****** 21721	11186 12166 12607 16066 19565 20006 20986

2.3.1 設計荷重 (CASE - 3)

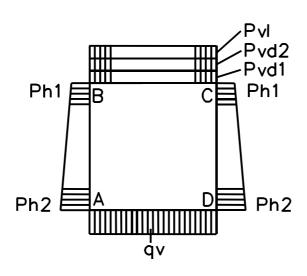
(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} = 28.350 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} = 46.350 \text{ kN/m}^{2}$$

(3) 活荷重

- ① 輪分布幅 $u = a + 2 \times H2$ = 6.200 m $v = b + 2 \times H2$ = 6.500 m = 117.000 kN $= 13.724 \text{ kN/m}^2$
- (4) 底版反力 $q \, v = P \, v d1 + P \, v d2 + P \, v 1 + \gamma \, c \times (2 \times T \, 3 \times Ho + 2 \times C^2) / Bo \qquad = 81.760 \, \, kN/m^2$

[荷重図]

 $= 11.850 \text{ kN} \cdot \text{m}$

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.153 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.153 $\text{N1} = 2 + \alpha = 3.153, \quad \text{N2} = 2 + \beta = 3.153$
- ② 荷 重 項

 $CAD = q v \times B o^{2} / 12 = 38.593 \text{ kN} \cdot \text{m}$ $CBC = \{ (P vd1 + P vd2 + P v1) \times B o^{2} \} / 12 = 34.706 \text{ kN} \cdot \text{m}$ $CAB = (Ho^{2}) \times (2 \times P hd1 + 3 \times P hd2) / 60 = 13.050 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1)$ = -11.565 kN·m $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1)$ = 10.918 kN·m

④ 端モーメント

 $\begin{aligned} \text{MAB} &= 2 \times \theta \, \text{A} + \theta \, \text{B} - \text{CAB} \\ \text{MAD} &= \beta \times \theta \, \text{A} + \text{CAD} \end{aligned} \qquad = -25. \, 262 \, \, \text{kN} \cdot \text{m}$ $\begin{aligned} \text{MAD} &= \beta \times \theta \, \text{A} + \text{CAD} \\ \text{MBA} &= 2 \times \theta \, \text{B} + \theta \, \text{A} + \text{CBA} \end{aligned} \qquad = 25. \, 262 \, \, \text{kN} \cdot \text{m}$ $\end{aligned}$ $\begin{aligned} \text{MBC} &= \alpha \times \theta \, \text{B} - \text{CBC} \end{aligned} \qquad = -22. \, 121 \, \, \text{kN} \cdot \text{m}$

MAB + MAD = 0

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$

MBA + MBC = 0

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 66.172 \text{ kN}$$

② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 29.938 kN·m

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 73.584 \text{ kN}$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 32.628 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

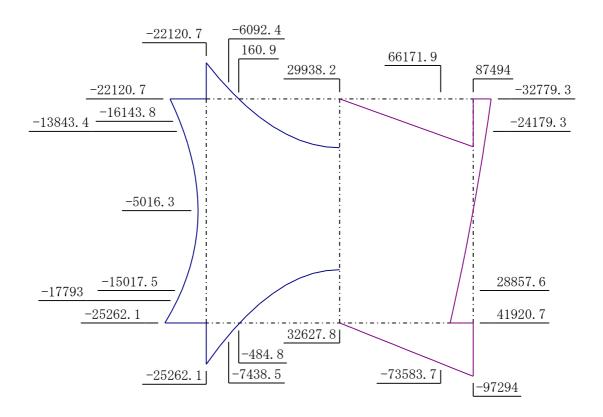
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 28.858 \text{ kN}$$

S XBA =
$$P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

 $- (MAB + MBA)/Ho$
 $- P hd2 \times x + (P hd2 - P hd1) \times x^2/(2 \times Ho)$ = -24.179 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.002 m

$$\begin{array}{lll} M_{\text{max}} &=& S \text{ AB} \times \text{ x} - P \text{ hd2} \times \text{ x}^2 / 2 \\ &-& (P \text{ hd1} - P \text{ hd2}) \times \text{ x}^3 / (6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = & -5.016 \text{ kN} \cdot \text{m} \end{array}$$

SM401000

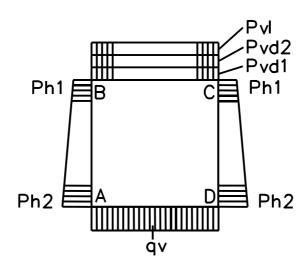
部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 090	-22121	87494	32779
	2 //νf始点	0. 290	-6092	******	32779
	S2 τ 点	0. 290	161	66172	32779
	1 中 央	1. 190	29938	0	32779
底版	9, S9 端 部	0. 090	-25262	97294	41921
	10 ///f始点	0. 290	-7439	******	41921
	S10 τ 点	0. 290	-485	73584	41921
	11 中 央	1. 190	32628	0	41921
側壁	4, S4 上 端部 5 上/ンチ点 S5 上 τ点 6 中 間 S7 下 τ点 7 下/ンチ点 8, S8 下 端部	1. 900 1. 700 1. 710 1. 002 0. 290 0. 300 0. 100	-22121 -16144 -13843 -5016 -15018 -17793 -25262	-32779 ****** -24179 0 28858 ****** 41921	87494 88474 88915 92384 95873 96314 97294

- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²


② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq$$
 = 33.350 kN/m²
$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq$$
 = 51.350 kN/m²

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 68.035 \text{ kN/m}^2$ [荷重図]

 $= 20.004 \text{ kN} \cdot \text{m}$

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.153 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.153 $\text{N1} = 2 + \alpha = 3.153, \quad \text{N2} = 2 + \beta = 3.153$
- ② 荷 重 項

CAD =
$$q v \times B o^{2} / 12$$
 = 32.115 kN·m
CBC = $\{(P v d1 + P v d2 + P v1) \times B o^{2}\} / 12$ = 28.228 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 14.717 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 13.517 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -7.781 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 7.134 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -23.145 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 23.145 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -20.004 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

 $MBA = 2 \times \theta B + \theta A + CBA$

MBA + MBC = 0

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 SXBC = (Pvd1+Pvd2+Pv1)×Bo/2-(Pvd1+Pvd2+Pv1)×x = 53.820 kN
 - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 22.338 kN·m

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 61.232 \text{ kN}$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 25.027 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

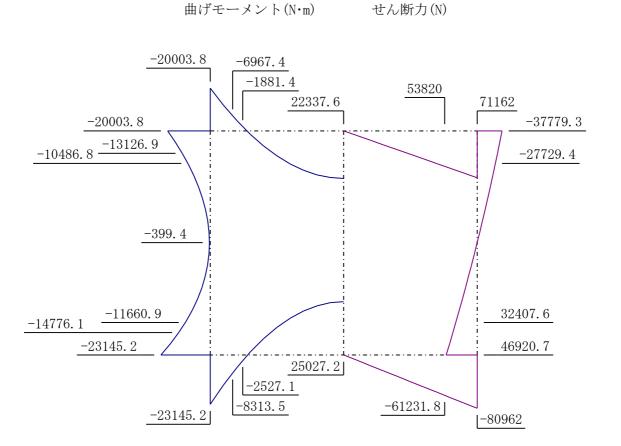
$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 32.408 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -27.729 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.002 m

$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB = -0.399 \text{ kN} \cdot \text{m}$$

SM401000

部材	照査点	距 離 x (m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0. 090	-20004	71162	37779
頂版	2 パチ始点	0. 290	-6967	*****	37779
	S2 τ 点	0.290	-1881	53820	37779
	1 中央	1. 190	22338	0	37779
	 9,S9 端 部	0.090	 -23145	80962	46921
底版	10 ハンチ始点	0.290	-8314	*****	46921
	S10 τ 点	0.290	-2527	61232	46921
	11 中 央	1. 190	25027	0	46921
	 4,S4 上 端部	1. 900	-20004	-37779	71162
	5 上ハンチ点	1.700	-13127	*****	72142
	S5 上 τ点	1.710	-10487	-27729	72583
側壁	6 中間	1.002	-399	0	76052
	S7 下 τ 点	0.290	-11661	32408	79541
	7 下ハンチ点	0.300	-14776	*****	79982
	8, S8 下 端部	0. 100	-23145 	46921	80962

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

項版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	$M \ (k N \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-22. 121	32. 779	67. 48	9.83	25. 344	3
頂版	ハンチ始点	-5. 533	10. 434	53. 03	6. 50	6. 211	1
	中 央	34. 812	10. 434	333.65	6.50	35. 490	1
	端部	-25. 262	41. 921	60. 26	9.83	29. 384	3
底版	ハンチ始点	-8. 313	46. 921	17.72	6. 50	11. 363	4
	中 央	32.628	41. 921	77.83	6.50	35. 353	3
	上端部	-22. 121	87. 494	25. 28	8.83	29.849	3
	上ハンチ点	-14. 079	54. 712	25. 73	5. 50	17. 089	1
側壁	中間	-8.430	59. 670	14. 13	5. 50	11.712	1
	下ハンチ点	-17. 793	96. 314	18. 47	5.50	23. 090	3
	下端部	-25. 262	97. 294	25. 96	8.83	33.857	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$

 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$

$$d = c1 \times \sqrt{(Ms / b)} \qquad h = d + d' < T$$

$$h = d + d' < T$$

ここに、 M : 軸力を考慮した曲げモーメント $(kN \cdot m/m)$ b : 単位長 (cm) d': 鉄筋かぶり (cm) h : 必要部材厚 (cm) n : ヤング係数比 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$

部材 点		Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
	端部	25. 344	10.02	13. 52	26. 67	5. 457
頂版	ハンチ始点	6. 211	4. 96	8. 46	20.00	1.861
	中 央	35. 490	11.85	15. 35	20.00	14. 913
	端部	29. 384	10.78	14. 28	26. 67	6. 139
底版	ハンチ始点	11. 363	6.71	10. 21	20.00	1.768
	中 央	35. 353	11.83	15. 33	20.00	12.881
	上端部	29.849	10.87	14. 37	24. 67	4. 361
	上ハンチ点	17. 089	8. 22	11.72	18. 00	4. 879
側壁	中間	11.712	6.81	10.31	18.00	1.853
	下ハンチ点	23. 090	9. 56	13. 06	18.00	5. 385
	下端部	33. 857	11. 58	15. 08	24. 67	5. 139
				1 1' /	T	CHECK OF

d+d' < T CHECK OK

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\begin{array}{l} \sigma\,c \,=\, N \,\,/\,\, \{b \,\,\times\,\, x \,\,/\,\, 2 \,-\,\, n \,\,\times\,\, As \,\,/\,\, x \,\,(\,c \,\,+\,\, T \,\,/\,\, 2 \,-\,\, x)\}\\ \sigma\,s \,=\, n \,\,\times\,\, \sigma\,c \,\,/\,\, x \,\,\times\,\, (\,c \,\,+\,\, T \,\,/\,\, 2 \,\,-\,\, x) \end{array}$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 16 - 12
 D 13 - 6
 D 16 - 12
 D 13 - 6
 D -0 - 0
 D 13 - 6

 D 0 - 0
 D 10 - 6
 D 0 - 0
 D 10 - 6
 D 0 - 0
 D 10 - 6

部材	点	部材幅	使用鉄筋量	X	実 応	力	度(N/mm²)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σ s'
	端部	100.00	7. 921	7. 202	3. 39	112.7	0.0
頂版	ハンチ始点	100.00	7. 921	5.802	1.47	40.7	0.0
	中 央	100.00	15.888	6.907	7.24	150.8	0.0
	端部	100.00	7. 921	7. 314	3.88	126.0	0.0
底版	ハンチ始点	100.00	7. 921	7. 248	2.23	42.6	0.0
	中 央	100.00	15.888	7. 268	6.91	131.7	0.0
	上端部	100.00	7. 921	8. 191	3.95	93. 9	0.0
	上ハンチ点	100.00	7. 921	5.859	4.65	102.9	0.0
側壁	中間	100.00	7. 921	6.905	2.78	45.9	0.0
	下ハンチ点	100.00	7. 921	6.336	5.88	113.7	0.0
	下端部	100.00	7. 921	8. 125	4. 52	108.7	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	51.005	8.460	66. 172	53.820				
頂版	M			0. 161					
τ点	N			32. 779					
	最大			0					
	S	48.049	15.872	73. 584	61. 232				
底版	M			-0.485					
τ点	N			41. 921					
	最大			0					
	S	-9. 142	-9.837	-24. 179	-27. 729				
側壁上	M				-10. 487				
τ点	N				72. 583				
	最大				0				
	S	8. 111	14. 516	28.858	32. 408				
側壁下	M				-11.661				
τ点	N				79. 541				
	最大				0				

ここに、S: せん断力(kN)、M: モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1.2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn)を τ a に乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $ttl, 1 \le Cn \le 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m)N: 断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張	美鉄筋	鉄筋比	Cpt
	T	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0. 200	0.035	0. 165000	1.400	D16-8	15. 888	0.963	1.478
底版 τ 点	0. 200	0.035	0. 165000	1.400	D13-4	7. 921	0.480	1. 180
					D10-4			
側壁上 τ 点	0. 183	0.035	0. 148333	1.400	D13-4	7. 921	0.534	1. 220
					D10-4			
側壁下 τ 点	0. 183	0.035	0. 148333	1.400	D13-4	7. 921	0.534	1. 220
					D10-4			

補正係数③を求める。

照査位置	M	N	Ac	Ic	у	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版 τ 点	0. 161	32. 779	0. 20000	0.000667	0.10000	1. 093	2.000
底版 τ 点	-0.485	41. 921	0. 20000	0.000667	0.10000	1. 398	2.000
側壁上 τ 点	-10. 487	72. 583	0. 18300	0.000511	0.09150	2. 215	1. 211
側壁下 τ 点	-11.661	79. 541	0. 18300	0.000511	0.09150	2. 427	1. 208

補正した許容せん断応力度

照査位置	τа		補正		
		Се	Cpt	Cn	τа
頂版 τ 点	0. 260	1.400	1.478	2.000	1. 076
底版 τ 点	0. 260	1.400	1. 180	2.000	0.859
側壁上 τ 点	0.260	1.400	1. 220	1. 211	0. 538
側壁下 τ 点	0.260	1.400	1. 220	1. 208	0. 537

せん断応力度の照査

照査位置	せん断力	応力度	補正	判定
	S	τ	τа	
	(kN)	(N/mm2)	(N/mm2)	
頂版τ点	66. 172	0.401	1. 076	OK
底版 τ 点	73. 584	0.446	0.859	OK
側壁上τ点	27. 729	0. 187	0.538	OK
側壁下τ点	32. 408	0. 218	0. 537	OK

以 上