	プ	レ:	キャ	・ス	}	
	ボッ	, クラ	スカノ	レバー	- -	
	設	計	計	算	書	
_					1 = -	

○内空寸法 : 内 幅(B) 2200 mm

内 高(H) 800 mm 長 さ(L) 2000 mm

○設計条件 : 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千 葉 窯 業 株 式 会 社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $2200 \times (H) 800 \times (L) 2000 \text{ [mm]}$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) $v = 9.0 [kN/m^3]$

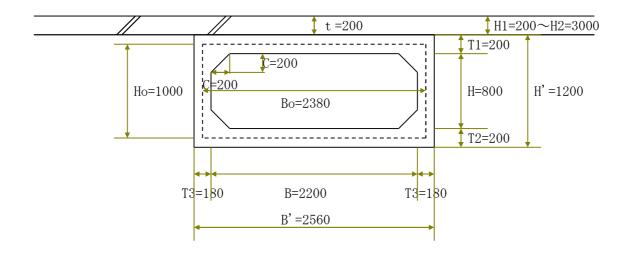
- 1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) : $\alpha = 1.000$
- (上 : T'荷重 横断通行 1.4 活荷重 載)

(輪接地幅 a = 0.20m b = 0.50m)

(側 載) : $Q = 10.0 [kN/m^2]$

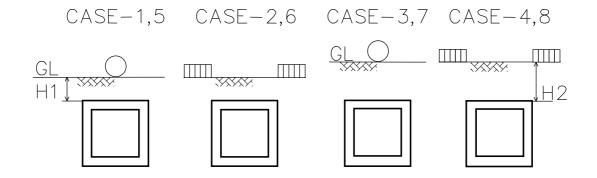
- 1.5 衝擊係数 i = 0.300
- 1.6 鉄筋かぶり 頂 版 底 版 側 壁

(内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm


1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$

1.8 許容応力度

鉄筋引張応力度 : σ sa = 160 [N/mm²] : $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度 コンクリート


設計基準強度 : $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 : $\sigma ca = 11.7 [N/mm^2]$ $\tau a = 0.260 [N/mm^2]$ せん断応力度

1.9 標準断面図

[単位:mm]

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

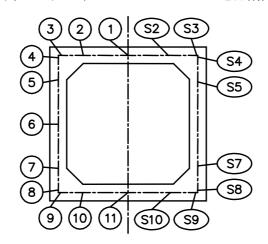
CASE 2, 4, 6, 8は、荷重がカルバート側載の場合

また

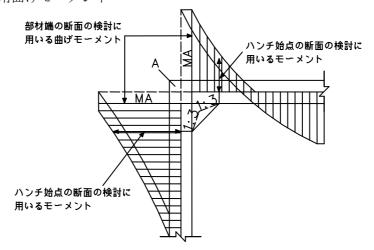
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

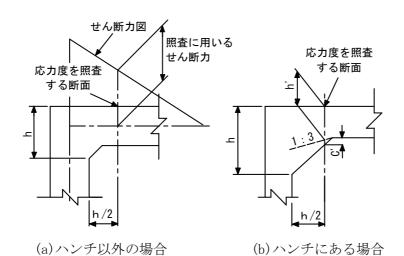
また


CASE 1, 2, 3, 4 は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 ${\cal C}$ の 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

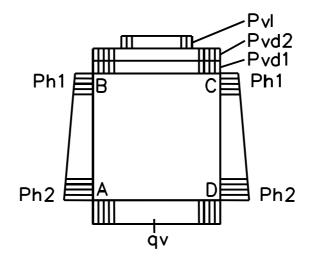
 $P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$

- (2) 土圧
 - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 3.150 \text{ kN/m}^2$$


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 12.150 \text{ kN/m}^2$$

- (3) 活荷重
- ① 輪分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
- ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²
- (4) 底版反力

$$q v = P v d1 + P v d2 + \{P v 1 \times u + \gamma c \times (2 \times T 3 \times H_0 + 2 \times C^2)\} / B_0$$
 = 49.682 kN/m²

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 0.576$$

 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 0.576$
 $\text{N1} = 2 + \alpha = 2.576, \quad \text{N2} = 2 + \beta = 2.576$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 23.452 kN·m

CBC = $\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$ = 29.215 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.713 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.563 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -15.474 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 17.128 \text{ kN} \cdot \text{m}$$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -14.533 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 14.533 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA$ = 19.344 kN·m

 $MBC = \alpha \times \theta B - CBC = -19.344 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x = 51.005 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 31.559 \text{ kN} \cdot \text{m}$$

- (2) 底版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 44.714 \text{ kN}$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 20.644 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

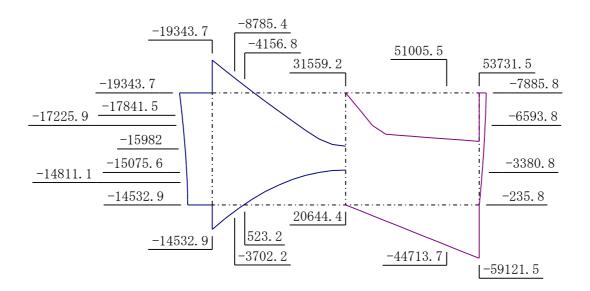
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -3.381 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -6.594 kN

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho) = 0$$

上式を用いて x を求めると。 x = 0.500 m

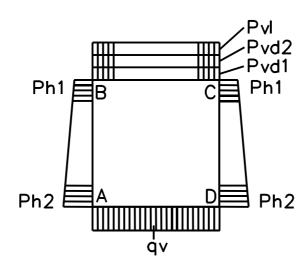
$$\begin{aligned} \mathsf{Mmax} &= \mathsf{S}\,\mathsf{AB} \times \mathbf{x} - \mathsf{P}\,\mathsf{hd2} \times \mathbf{x}^{\,2} / 2 \\ &- (\mathsf{P}\,\mathsf{hd1} - \mathsf{P}\,\mathsf{hd2}) \times \mathbf{x}^{\,3} / (6 \times \mathsf{Ho}) + \mathsf{MAB} \end{aligned} \qquad = -15.982 \; \mathsf{kN} \cdot \mathsf{m}$$

						[/単位長]	
部材	ţ ļ	照查点	点	距離	曲げモーメ	ント せん断力	軸力
				$_{\mathrm{X}}$ (m)	$M(N*_{m})$	S (N)	N (N)
	3, S3	 端	 部	0. 090	-19344	53732	 7886
頂版	2	ハンチ	始点	0.290	-8785	*****	7886
	S2	τ	点	0.290	-4157	51006	7886
	1	中	央	1. 190	31559	0	7886
	9, S9	 端	 部	0. 090	-14533	 59122	236
底版	10	ハンチ	始点	0.290	-3702	*****	236
	S10	τ	点	0.290	523	44714	236
	11	中	央	1. 190	20644	0	236
	4, S4	上:	 端部	0. 900	-19344	-7886	53732
	5	上バ	/チ点	0.700	-17842	*****	54810
	S5	上	τ点	0.710	-17226	-6594	55295
側壁	6	中	間	0.500	-15982	0	56427
	S7	下	τ点	0.290	-15076	-3381	57558
	7	下バ	/チ点	0.300	-14811	*****	58044
	8, S8	下;	端部	0. 100	-14533	-236	59122

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$$

- (2) 土圧
 - ① 鉛直土圧


$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 13.929 \text{ kN/m}^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 0.576$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 0.576$ $\text{N1} = 2 + \alpha = 2.576, \quad \text{N2} = 2 + \beta = 2.576$
- ② 荷 重 項

 $CAD = q v \times B o^2 / 12 \qquad = 6.575 \text{ kN} \cdot \text{m}$

CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$ = 4.437 kN·m

 $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 1.129 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.979 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}/(N1 \times N2 - 1) = -3.102 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1) = 2.546 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -4.787 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 4.787 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 2.970 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -2.970 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 8.460 \text{ kN}$

② 曲げモーメント

 $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 3.686 \text{ kN} \cdot \text{m}$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -1.015 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^{2}/8 - MAD = 5.075 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 4.298 \text{ kN}$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

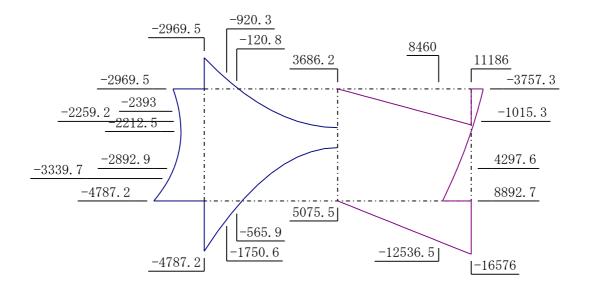
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -1.015 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.619 m

$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$


$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB$$

$$= -2.212 \text{ kN} \cdot \text{m}$$

SL433000

部材	照査点	距 離 x (m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 ///チ始点 S2 τ 点 1 中 央	0. 090 0. 290 0. 290 1. 190	-2970 -920 -121 3686	11186 ***** 8460 0	3757 3757 3757 3757
底版	9, S9 端 部 10 /\mathcal{V}f始点 S10 τ 点 11 中 央	0. 090 0. 290 0. 290 1. 190	-4787 -1751 -566 5076	16576 ****** 12537 0	8893 8893 8893
側壁	4, S4 上 端部 5 上ハンチ点 S5 上 τ点 6 中 間 S7 下 τ点 7 下ハンチ点 8, S8 下 端部	0. 900 0. 700 0. 710 0. 619 0. 290 0. 300 0. 100	-2970 -2393 -2259 -2213 -2893 -3340 -4787	-3757 ****** -1015 0 4298 ******	11186 12264 12749 13240 15013 15498 16576

 $= 37.350 \text{ kN/m}^2$

2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

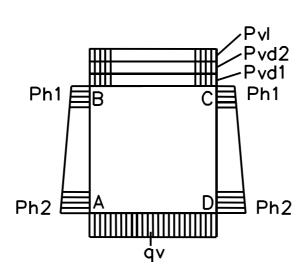
 $P vd1 = \gamma c \times T1$ $= 4.900 \text{ kN/m}^2$

- (2)十圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} = 28.350 \text{ kN/m}^{2}$$


$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} = 37.350 \text{ kN/m}^{2}$$

(3) 活荷重

① 輪分布幅
$$u = a + 2 \times H2$$
 $= 6.200 \text{ m}$ $v = b + 2 \times H2$ $= 6.500 \text{ m}$ $= 117.000 \text{ kN}$ $= 13.724 \text{ kN/m}^2$

底版反力 (4) $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^{2}) / Bo = 78.054 \text{ kN/m}^{2}$

[荷重図]

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.576 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.576 $\text{N1} = 2 + \alpha = 2.576, \quad \text{N2} = 2 + \beta = 2.576$
- ② 荷 重 項

CAD = $q v \times Bo^2/12$ = 36.844 kN·m CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\}/12$ = 34.706 kN·m

 $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 2.812 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 2.663 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -21.236 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1) = 20.680 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -24.604 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 24.604 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 22.787 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -22.787 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 66.172 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = (P_{\text{vd1}} + P_{\text{vd2}}) \times B_{\text{o}}^2 / 8 + P_{\text{v1}} \times B_{\text{o}}^2 / 8 + MBC = 29.272 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 70.248 \text{ kN}$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 30.662 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

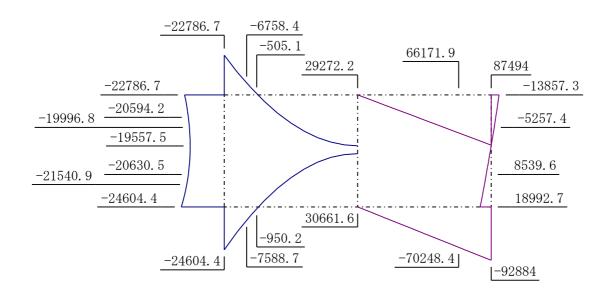
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 8.540 \text{ kN}$$

S XBA =
$$P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

 $- (MAB + MBA)/Ho$
 $- P hd2 \times x + (P hd2 - P hd1) \times x^2/(2 \times Ho)$ = -5. 257 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.544 m

$$\begin{array}{lll} M_{\text{max}} &=& S \text{ AB} \times \text{ x} - P \text{ hd2} \times \text{ x}^2 / 2 \\ &-& (P \text{ hd1} - P \text{ hd2}) \times \text{ x}^3 / (6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = & -19.558 \text{ kN} \cdot \text{m} \end{array}$$

SL433000

部材	照査点	距 離 x (m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 //νf始点 S2 τ 点 1 中 央	0. 090 0. 290 0. 290 1. 190	-22787 -6758 -505 29272	87494 ****** 66172 0	13857 13857 13857 13857
底版	9, S9 端 部 10 ////////////////////////////////////	0. 090 0. 290 0. 290 1. 190	-24604 -7589 -950 30662	92884 ****** 70248 0	18993 18993 18993 18993
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ点 6 中 間 S7 下 τ点 7 下ννf点 8, S8 下 端部	0. 900 0. 700 0. 710 0. 544 0. 290 0. 300 0. 100	-22787 -20594 -19997 -19558 -20631 -21541 -24604	-13857 ****** -5257 0 8540 ****** 18993	87494 88572 89057 89952 91321 91806 92884

2.4.1 設計荷重 (CASE - 4)

(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$

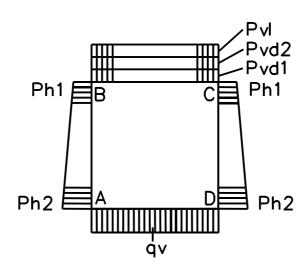
- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.350 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \}$$


$$+ \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq$$
 = 42.350 kN/m²

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

(3) 活荷重 Pvl = 0

(4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 64.329 \text{ kN/m}^2$ [荷重図]

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.576 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.576 $\text{N1} = 2 + \alpha = 2.576, \quad \text{N2} = 2 + \beta = 2.576$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 30.366 kN·m

CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$ = 28.228 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 3.229 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 3.079 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -16.862 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 16.306 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -20.647 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 20.647 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 18.829 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -18.829 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 $SXBC = (Pvd1+Pvd2+Pv1) \times Bo/2-(Pvd1+Pvd2+Pv1) \times x = 53.820 kN$
 - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 23.512 kN·m

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 57.897 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = q_{\text{V}} \times B_{\text{O}}^2 / 8 - M_{\text{AD}}$$
 = 24.901 kN·m

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 9.589 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB+MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -6.308 kN

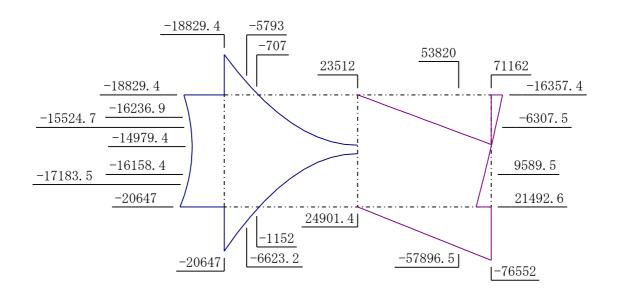
② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^{2} / (2 \times Ho) = 0$$

上式を用いて
$$x$$
 を求めると。 x = 0.538 m

$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$


$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= -14.979 \text{ kN} \cdot \text{m}$$

SL433000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 ///////////////////////////////////	0. 090 0. 290 0. 290 1. 190	-18829 -5793 -707 23512	71162 ****** 53820 0	16357 16357 16357 16357
底版	9, S9 端 部 10 ///f始点 S10 τ 点 11 中 央	0. 090 0. 290 0. 290 1. 190	-20647 -6623 -1152 24901	76552 ****** 57897 0	21493 21493 21493 21493
側壁	4, S4 上 端部 5 上 λ λ f 点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下 λ λ f 点 8, S8 下 端部	0. 900 0. 700 0. 710 0. 538 0. 290 0. 300 0. 100	-18829 -16237 -15525 -14979 -16158 -17184 -20647	-16357 ****** -6308 0 9590 ****** 21493	71162 72240 72725 73652 74989 75474 76552

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

項版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	M $(kN \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-22. 787	13. 857	164. 44	9.83	24. 149	3
頂版	ハンチ始点	-8. 785	7. 886	111. 41	6. 50	9. 298	1
	中 央	31. 559	7.886	400. 20	6.50	32.072	1
	端部	-24. 604	18. 993	129. 55	9.83	26. 472	3
底版	ハンチ始点	-7. 589	18. 993	39. 96	6. 50	8.823	3
	中 央	30.662	18. 993	161.44	6.50	31.896	3
	上端部	-22. 787	87. 494	26. 04	8.83	30. 515	3
	上ハンチ点	-20. 594	88. 572	23. 25	5. 50	25. 466	3
側壁	中間	-19. 558	89. 952	21.74	5. 50	24. 505	3
	下心チ点	-21. 541	91. 806	23. 46	5. 50	26. 590	3
	下端部	-24. 604	92. 884	26. 49	8.83	32.809	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$

 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$

$$d = c1 \times \sqrt{(Ms / b)}$$
 $h = d + d' < T$

 ここに、 M : 軸力を考慮した曲げモーメント
 (kN·m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

$$\sigma c^3 + [3 \times \sigma sa / (2 \times n) - 3 \times N \times (e + c) / (b \times da^2)] \times \sigma c^2$$
 $- 6 \times N \times (e + c) / (n \times b \times da^2) \times \sigma sa \times \sigma c$
 $- 3 \times N \times (e + c) / (N2 \times b \times da^2) \times \sigma sa^2 = 0$
上式を解いて σc を求める。また $da = T - d'$ とする。

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$

部材 点		Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
	端部	24. 149	9. 78	13. 28	26. 67	6. 271
頂版	ハンチ始点	9. 298	6. 07	9. 57	20.00	3. 323
	中 央	32.072	11.27	14.77	20.00	13.486
	端部	26. 472	10. 24	13.74	26. 67	6.667
底版	ハンチ始点	8. 823	5. 91	9. 41	20.00	2. 427
	中央	31.896	11. 24	14. 74	20. 00	12. 711
	上端部	30. 515	10.99	14. 49	24. 67	4. 591
	上ハンチ点	25. 466	10.04	13. 54	18.00	7. 116
側壁	中間	24. 505	9.85	13.35	18.00	6. 524
	下ハンチ点	26. 590	10. 26	13. 76	18.00	7. 508
	下端部	32. 809	11. 40	14. 90	24. 67	5. 050
				1 1 1 1 / /	T	CHECK OF

 $\mathrm{d}+\mathrm{d}$ ' < T CHECK OK

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\begin{array}{l} \sigma\,c \,=\, N \,\,/\,\, \{b \,\,\times\,\, x \,\,/\,\, 2 \,-\,\, n \,\,\times\,\, As \,\,/\,\, x \,\,(\,c \,\,+\,\, T \,\,/\,\, 2 \,-\,\, x)\}\\ \sigma\,s \,=\, n \,\,\times\,\, \sigma\,c \,\,/\,\, x \,\,\times\,\, (\,c \,\,+\,\, T \,\,/\,\, 2 \,\,-\,\, x) \end{array}$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 16 - 14
 D 13 - 14
 D 16 - 14
 D 13 - 14
 D -0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実 応	力	度(N/mm²)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σ s'
	端部	100.00	8.869	6. 992	3. 32	115. 1	0.0
頂版	ハンチ始点	100.00	8.869	5.721	2. 23	62.9	0.0
	中 央	100.00	13. 902	6.556	6.83	155.5	0.0
	端部	100.00	8.869	7.091	3. 59	122. 1	0.0
底版	ハンチ始点	100.00	8.869	6.279	1.95	47.6	0.0
	中 央	100.00	13. 902	6.688	6.68	147. 1	0.0
	上端部	100.00	8.869	8.450	3.94	88.8	0.0
	上ハンチ点	100.00	8.869	6.226	6. 58	131. 2	0.0
側壁	中間	100.00	8.869	6.319	6. 26	121.5	0.0
	下ハンチ点	100.00	8.869	6.214	6.89	137.7	0.0
	下端部	100.00	8.869	8.409	4. 25	96.7	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	51.005	8.460	66. 172	53.820				
頂版	M			-0.505					
τ点	N			13.857					
	最大			0					
	S	44. 714	12.537	70. 248	57.897				
底版	M			-0.950					
τ点	N			18. 993					
	最大			0					
	S	-6. 594	-1.015	-5. 257	-6. 308				
側壁上	M	-17. 226							
τ点	N	55. 295							
	最大	0							
	S	-3.381	4. 298	8.540	9. 589				
側壁下	M	_	_	_	-16. 158	_			
τ点	N				74. 989				
	最大				0				

ここに、S: せん断力(kN)、M: モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1.2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $ttll_1 \le Cn \le 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m) N: 断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張鉄筋		鉄筋比	Cpt
	T	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0. 200	0.035	0. 165000	1.400	D13-7	8.869	0.538	1. 223
底版 τ 点	0.200	0.035	0. 165000	1.400	D13-7	8.869	0.538	1. 223
側壁上 τ 点	0. 183	0.035	0. 148333	1.400	D13-7	8.869	0. 598	1. 259
側壁下 τ 点	0. 183	0.035	0. 148333	1.400	D13-7	8.869	0.598	1.259

補正係数③を求める。

照査位置	M	N	Ac	Ic	У	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版τ点	-0.505	13.857	0.20000	0.000667	0.10000	0.462	1. 915
底版 τ 点	-0.950	18. 993	0. 20000	0.000667	0.10000	0. 633	1.667
側壁上 τ 点	-17. 226	55. 295	0. 18300	0.000511	0.09150	1. 687	1.098
側壁下τ点	-16. 158	74. 989	0. 18300	0.000511	0.09150	2. 288	1. 142

補正した許容せん断応力度

照査位置	τα		補正		
		Се	Cpt	Cn	τа
頂版 τ 点	0. 260	1.400	1. 223	1. 915	0.853
底版 τ 点	0.260	1.400	1. 223	1.667	0. 742
側壁上 τ 点	0. 260	1.400	1. 259	1.098	0. 503
側壁下 τ 点	0.260	1.400	1. 259	1. 142	0. 523

せん断応力度の照査

照査位置	せん断力	応力度	補正	判定			
	S	τ	τα				
	(kN)	(N/mm2)	(N/mm2)				
頂版 τ 点	66. 172	0.401	0.853	OK			
底版 τ 点	70. 248	0. 426	0. 742	OK			
側壁上 τ 点	6. 594	0.044	0. 503	OK			
側壁下 τ 点	9. 590	0.065	0. 523	OK			

以上