受付 No. 台帳 No. SL421000



○内空寸法 : 内 幅(B) 1600 mm

内 高(H) 1000 mm 長 さ(L) 2000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B)  $1600 \times (H) 1000 \times (L) 2000 \text{ [mm]}$ 

土被り :  $H1 = 0.200 \sim H2 = 3.000 [m]$ 

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 :  $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) :  $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) :  $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート :  $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) :  $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下)  $v = 9.0 [kN/m^3]$ 

1.3 土圧係数 平 ) (水 : Ka = 0.500(鉛 直 )  $\alpha = 1.000$ 

(上 載 ) : T'荷重 横断通行 1.4 活荷重

(輪接地幅 a = 0.20m b = 0.50m)

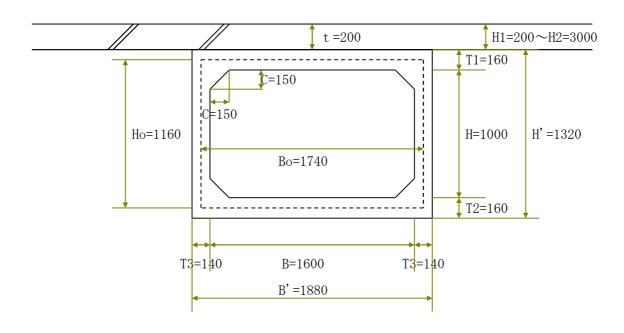
(側 載 ) :  $Q = 10.0 [kN/m^2]$ 

i = 0.3001.5 衝擊係数

1.6 鉄筋かぶり : 頂 版 底 版 側 壁

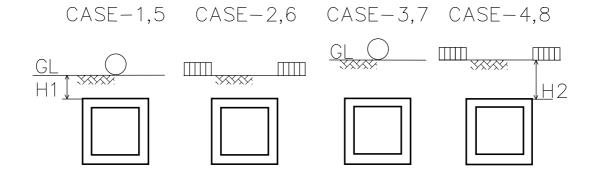
> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) :  $\beta = 0.9$  (土被りH2) :  $\beta = 0.9$ 


1.8 許容応力度

鉄筋引張応力度 :  $\sigma$  sa = 160 [N/mm<sup>2</sup>] :  $\sigma sy = 295 \left[ N/mm^2 \right]$ 鉄筋降伏点応力度

コンクリート


設計基準強度 :  $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 :  $\sigma ca = 11.7 [N/mm^2]$ せん断応力度  $\tau a = 0.260 [N/mm^2]$ 

#### 1.9 標準断面図



[単位:mm]

#### 1.10 荷重の組合せ



# [荷重 CASE]

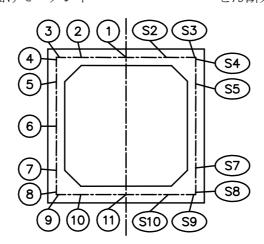
CASE 1, 3, 5, 7は、荷重がカルバート上載の場合 CASE 2, 4, 6, 8は、荷重がカルバート側載の場合

# また

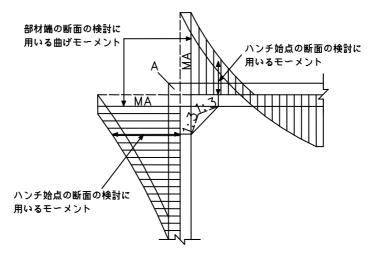
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

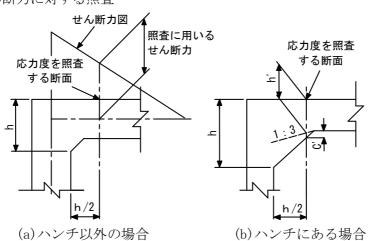
#### また


CASE 1, 2, 3, 4 は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

#### 2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力



# 1) 断面検討用曲げモーメント



# 2) せん断力に対する照査



b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分  ${\cal C}$ の 1/3 まで大きくとります。

h' = T + C'/3

# 2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

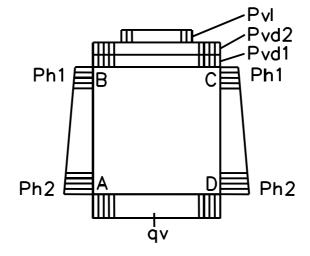
 $P vd1 = \gamma c \times T1 \qquad = 3.920 \text{ kN/m}^2$ 

- (2) 土圧
  - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m<sup>2</sup>

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\}$$
 = 2.970 kN/m<sup>2</sup>


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 13.410 \text{ kN/m}^{2}$$

- (3) 活荷重
  - ① 輸分布幅  $u = a + 2 \times H1$  = 0.600 m  $v = b + 2 \times H1$  = 0.900 m
  - ② 活荷重  $P1 = 0.4 \times T \times (1 + i) \times \beta$  = 117.000 kN  $Pv1 = 2 \times P1/2.75/u$  = 141.818 kN/m<sup>2</sup>
- (4) 底版反力

$$qv = Pvd1 + Pvd2 + \{Pv1 \times u + \gamma c \times (2 \times T3 \times Ho + 2 \times C^{2})\} / Bo = 62.530 \text{ kN/m}^{2}$$

# [ 荷重図 ]



# 2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

# (1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 0.995  
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$  = 0.995  
 $\text{N1} = 2 + \alpha = 2.995, \quad \text{N2} = 2 + \beta = 2.995$ 

# ② 荷 重 項

 $CAD = q v \times B o^2 / 12$  = 15.776 kN·m

CBC =  $\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$  = 19.898 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 1.035 \text{ kN} \cdot \text{m}$ 

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.801 \text{ kN} \cdot \text{m}$ 

#### ③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -7.935 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 9.025 \text{ kN} \cdot \text{m}$$

# ④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -7.880 \text{ kN} \cdot \text{m}$ 

 $MAD = \beta \times \theta A + CAD = 7.880 \text{ kN} \cdot \text{m}$ 

 $MBA = 2 \times \theta B + \theta A + CBA$  = 10.917 kN·m

 $MBC = \alpha \times \theta B - CBC = -10.917 \text{ kN} \cdot \text{m}$ 

MAB + MAD = 0

MBA + MBC = 0

# 2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
  - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x = 47.976 \text{ kN}$$

② 曲げモーメント

$$\begin{aligned} \text{Mmax} &= (\text{Pvd1} + \text{Pvd2}) \times \text{Bo}^2/8 \\ &+ \text{Pvl} \times \text{u} \times (\text{Bo}/2 - \text{u}/4)/2 + \text{MBC} \end{aligned} = 22.902 \text{ kN·m} \end{aligned}$$

- (2) 底 版
  - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 40.332 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 15.784 kN \cdot m$$

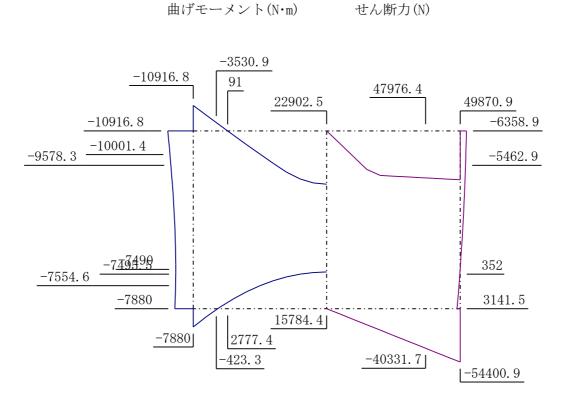
- (3) 側壁
  - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 0.352 \text{ kN}$$

S XBA = 
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$
  
 $-(MAB + MBA)/Ho$   
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$  = -5.463 kN


② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho)$$
 = 0  
上式を用いて  $x$  を求めると。  $x$  = 0.256 m

$$\begin{aligned} \mathsf{Mmax} &= \mathsf{S}\,\mathsf{AB} \times \mathbf{x} - \mathsf{P}\,\mathsf{hd2} \times \mathbf{x}^{\,2} / 2 \\ &- (\mathsf{P}\,\mathsf{hd1} - \mathsf{P}\,\mathsf{hd2}) \times \mathbf{x}^{\,3} / (6 \times \mathsf{Ho}) + \mathsf{MAB} \end{aligned} \qquad = -7.490 \ \mathsf{kN} \cdot \mathsf{m}$$

|                |        | [ /単    | 位長]   |       |
|----------------|--------|---------|-------|-------|
| 部材 照査点         | 距離     | 曲げモーメント | せん断力  | 軸力    |
|                | x (m)  | M (N*m) | S (N) | N (N) |
| 3,S3 端 部       | 0.070  | -10917  | 49871 | 6359  |
| 頂版 2 ハンチ始点     | 0.220  | -3531   | ***** | 6359  |
| S2 τ 点         | 0. 225 | 91      | 47976 | 6359  |
| 1 中央           | 0.870  | 22903   | 0     | 6359  |
| <br>9, S9 端 部  | 0. 070 | -7880   | 54401 | 3142  |
| 底版 10 パチ始点     | 0.220  | -423    | ***** | 3142  |
| S10 τ 点        | 0.225  | 2777    | 40332 | 3142  |
| 11 中 央         | 0.870  | 15784   | 0     | 3142  |
| <br>4, S4 上 端部 | 1. 080 | -10917  | -6359 | 49871 |
| 5 上ハンチ点        | 0.930  | -10001  | ***** | 50457 |
| S5 上 τ 点       | 0.935  | -9578   | -5463 | 50750 |
| 側壁6 中 間        | 0.256  | -7490   | 0     | 53401 |
| S7 下 τ 点       | 0. 225 | -7496   | 352   | 53522 |
| 7 下ハンチ点        | 0. 230 | -7555   | ***** | 53815 |
| 8, S8 下 端部     | 0.080  | -7880   | 3142  | 54401 |



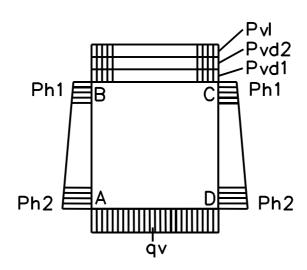
# 2.2.1 設計荷重 (CASE - 2)

(1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 3.920 \text{ kN/m}^2$$

- (2) 土圧
  - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m<sup>2</sup>


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2)\,\} \,+\!P\,q & = & 7.\,970\,\,k\,N/m^2 \end{array}$$
 
$$P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2\!+\!Ho)\,\} \,+\!P\,q & = & 18.\,410\,\,k\,N/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で  $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$  とする。

(4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 13.627 \text{ kN/m}^2$  [ 荷重図 ]



# 2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

# (1) ラーメン計算

- ① 係 数
  - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 0.995$   $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 0.995$   $\text{N1} = 2 + \alpha = 2.995, \quad \text{N2} = 2 + \beta = 2.995$
- ② 荷 重 項

 $CAD = q v \times B o^2 / 12$  = 3.438 kN·m

CBC =  $\{(P vd1 + P vd2 + P v1) \times B o^2\} / 12$  = 2.124 kN·m

 $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 1.596 \text{ kN} \cdot \text{m}$ 

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 1.362 \text{ kN} \cdot \text{m}$ 

#### ③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -0.788 \text{ kN} \cdot \text{m}$ 

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 0.518 \text{ kN} \cdot \text{m}$ 

#### ④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -2.654 \text{ kN} \cdot \text{m}$ 

 $MAD = \beta \times \theta A + CAD = 2.654 \text{ kN} \cdot \text{m}$ 

 $MBA = 2 \times \theta B + \theta A + CBA = 1.609 \text{ kN} \cdot \text{m}$ 

 $MBC = \alpha \times \theta B - CBC = -1.609 \text{ kN} \cdot \text{m}$ 

MAB + MAD = 0

MBA + MBC = 0

# 2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
  - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 5.431 \text{ kN}$ 

② 曲げモーメント

 $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 1.577 \text{ kN} \cdot \text{m}$ 

- (2) 底 版
  - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -3.719 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD \qquad = 2.503 \text{ kN} \cdot \text{m}$$

- (3) 側壁
  - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 5.646 \text{ kN}$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

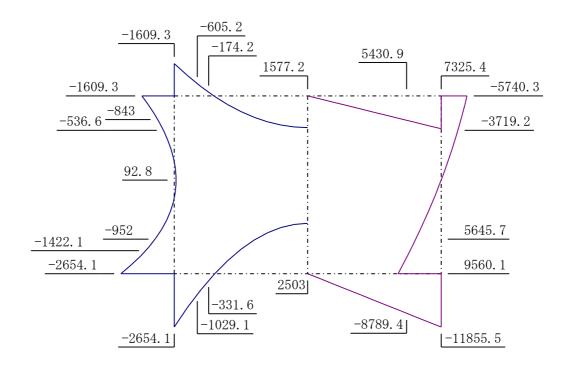
$$= -3.719 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0  
上式を用いて x を求めると。 x = 0.610 m

$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$


$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= 0.093 \text{ kN} \cdot \text{m}$$

SL421000

| 部材 | 照査点           | 距 離<br>x(m) | 曲げモーメント<br>M (N*m) | せん断力<br>S(N) | [ /単位長]<br>軸 力<br>N(N) |
|----|---------------|-------------|--------------------|--------------|------------------------|
|    | 3, S3 端 部     | 0.070       | -1609              | 7325         | 5740                   |
| 頂版 | 2 ハンチ始点       | 0. 220      | -605               | *****        | 5740                   |
|    | S2 τ 点        | 0.225       | -174               | 5431         | 5740                   |
|    | 1 中央          | 0.870       | 1577               | 0            | 5740                   |
|    | <br>9, S9 端 部 | 0.070       | -2654              | 11856        | 9560                   |
| 底版 | 10 ハンチ始点      | 0.220       | -1029              | *****        | 9560                   |
|    | S10 τ 点       | 0. 225      | -332               | 8789         | 9560                   |
|    | 11 中 央        | 0.870       | 2503               | 0            | 9560                   |
|    | <br>4,S4 上 端部 | 1. 080      | -1609              | -5740        | 7325                   |
|    | 5 上ハンチ点       | 0.930       | -843               | *****        | 7911                   |
|    | S5 上 τ 点      | 0.935       | -537               | -3719        | 8204                   |
| 側壁 | 6 中 間         | 0.610       | 93                 | 0            | 9473                   |
|    | S7 下 τ 点      | 0.225       | -952               | 5646         | 10977                  |
|    | 7 下ハンチ点       | 0.230       | -1422              | *****        | 11270                  |
|    | 8,S8 下 端部     | 0.080       | -2654              | 9560         | 11856                  |





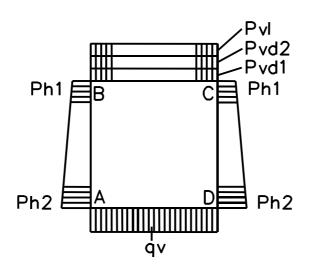
# 2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 3.920 \text{ kN/m}^2$ 

- (2) 土圧
  - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m<sup>2</sup>


② 水平土圧

$$P hd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H2 - t - t b + T1/2) \}$$
 = 28.170 kN/m<sup>2</sup>

$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} = 38.610 \text{ kN/m}^{2}$$

- (3) 活荷重
  - ① 輸分布幅  $u = a + 2 \times H2$  = 6.200 m  $v = b + 2 \times H2$  = 6.500 m
  - ② 活荷重  $P1 = 0.4 \times T \times (1 + i) \times \beta$  = 117.000 kN  $Pv1 = 2 \times P1/2.75/u$  = 13.724 kN/m<sup>2</sup>
- (4) 底版反力  $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 77.751 kN/m^2$

#### [ 荷重図 ]



# 2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

# (1) ラーメン計算

- ① 係 数
  - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$   $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$  = 0.995  $\text{N1} = 2 + \alpha = 2.995, \quad \text{N2} = 2 + \beta = 2.995$
- ② 荷 重 項

| $CAD = q v \times B o^2 / 12$                              | = | 19.617 kN·m |
|------------------------------------------------------------|---|-------------|
| $CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$           | = | 18.303 kN·m |
| $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60$ | = | 3.861 kN·m  |
| $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$ | = | 3.627 kN·m  |

#### ③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -7.761 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 7.491 \text{ kN} \cdot \text{m}$$

#### ④ 端モーメント

MBA + MBC = 0

$$\begin{aligned} \text{MAB} &= 2 \times \theta \, \text{A} + \theta \, \text{B} - \text{CAB} \\ \text{MAD} &= \beta \times \theta \, \text{A} + \text{CAD} \\ \text{MBA} &= 2 \times \theta \, \text{B} + \theta \, \text{A} + \text{CBA} \\ \text{MBC} &= \alpha \times \theta \, \text{B} - \text{CBC} \\ \text{MAB} + \text{MAD} &= 0 \end{aligned}$$

# 2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
  - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 46.791 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = (P_{\text{vd1}} + P_{\text{vd2}}) \times B_{\text{o}}^2 / 8 + P_{\text{v1}} \times B_{\text{o}}^2 / 8 + MBC = 16.606 \text{ kN} \cdot \text{m}$$

- (2) 底 版
  - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 50.150 \text{ kN}$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 17.532 kN \cdot m$$

- (3) 側壁
  - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

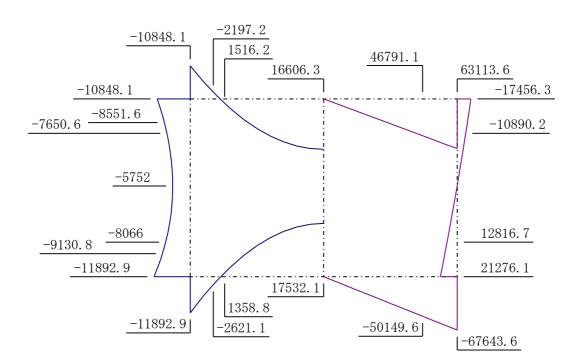
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 12.817 \text{ kN}$$

S XBA = 
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$
  
 $-(MAB+MBA)/Ho$   
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$  = -10.890 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0  
上式を用いて x を求めると。 x = 0.592 m


$$Mmax = SAB \times x - Phd2 \times x^2/2$$

$$-(Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB = -5.752 \text{ kN} \cdot \text{m}$$

SL421000

| 部材 | 照査点                                                                             | 距 離<br>x(m)                                                        | 曲げモーメント<br>M (N*m)                                            | せん断力<br>S (N)                             | [ /単位長]<br>軸 力<br>N(N)                                      |
|----|---------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|
| 頂版 | 3, S3 端 部                                                                       | 0. 070                                                             | -10848                                                        | 63114                                     | 17456                                                       |
|    | 2 //νf始点                                                                        | 0. 220                                                             | -2197                                                         | ******                                    | 17456                                                       |
|    | S2 τ 点                                                                          | 0. 225                                                             | 1516                                                          | 46791                                     | 17456                                                       |
|    | 1 中 央                                                                           | 0. 870                                                             | 16606                                                         | 0                                         | 17456                                                       |
| 底版 | 9, S9 端 部                                                                       | 0. 070                                                             | -11893                                                        | 67644                                     | 21276                                                       |
|    | 10 ///チ始点                                                                       | 0. 220                                                             | -2621                                                         | ******                                    | 21276                                                       |
|    | S10 τ 点                                                                         | 0. 225                                                             | 1359                                                          | 50150                                     | 21276                                                       |
|    | 11 中 央                                                                          | 0. 870                                                             | 17532                                                         | 0                                         | 21276                                                       |
| 側壁 | 4, S4 上 端部<br>5 上ννf点<br>S5 上 τ 点<br>6 中 間<br>S7 下 τ 点<br>7 下ννf点<br>8, S8 下 端部 | 1. 080<br>0. 930<br>0. 935<br>0. 592<br>0. 225<br>0. 230<br>0. 080 | -10848<br>-8552<br>-7651<br>-5752<br>-8066<br>-9131<br>-11893 | -17456 ****** -10890 0 12817 ****** 21276 | 63114<br>63699<br>63992<br>65332<br>66765<br>67058<br>67644 |





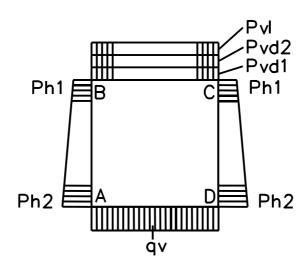
- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 3.920 \text{ kN/m}^2$ 

- (2) 土圧
  - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m<sup>2</sup>

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.170 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 43.610 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で  $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$  とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 64.027 \text{ kN/m}^2$  [ 荷重図 ]



# 2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

# (1) ラーメン計算

- ① 係 数
  - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$  = 0.995  $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$  = 0.995  $\text{N1} = 2 + \alpha = 2.995, \quad \text{N2} = 2 + \beta = 2.995$
- ② 荷 重 項

 $CAD = q v \times B o^2 / 12$  = 16.154 kN·m

CBC =  $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$  = 14.840 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 4.422 \text{ kN} \cdot \text{m}$ 

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 4.188 \text{ kN} \cdot \text{m}$ 

#### ③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -5.745 \text{ kN} \cdot \text{m}$ 

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 5.475 \text{ kN} \cdot \text{m}$ 

#### ④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -10.437 \text{ kN} \cdot \text{m}$ 

 $MAD = \beta \times \theta A + CAD = 10.437 \text{ kN} \cdot \text{m}$ 

 $MBA = 2 \times \theta B + \theta A + CBA = 9.392 \text{ kN} \cdot \text{m}$ 

 $MBC = \alpha \times \theta B - CBC = -9.392 \text{ kN} \cdot \text{m}$ 

MAB + MAD = 0

MBA + MBC = 0

# 2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
  - ① せん断力  $SXBC = (Pvd1+Pvd2+Pv1) \times Bo/2-(Pvd1+Pvd2+Pv1) \times x = 37.939 kN$
  - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 12.868 kN·m

- (2) 底 版
  - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 41.297 \text{ kN}$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 13.794 kN \cdot m$$

- (3) 側壁
  - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

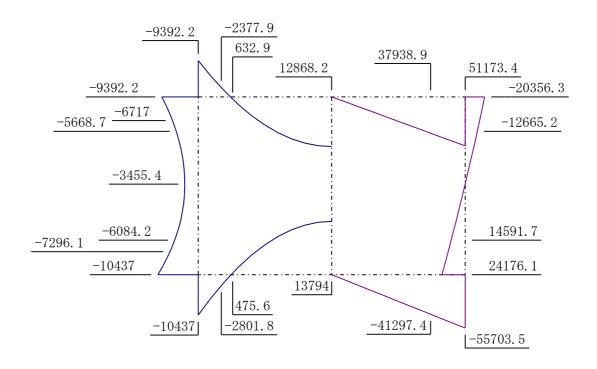
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 14.592 \text{ kN}$$

S XBA = 
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$
  
 $- (MAB + MBA)/Ho$   
 $- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$  = -12.665 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0  
上式を用いて x を求めると。 x = 0.590 m

$$\begin{aligned} \mathsf{M}\mathsf{m}\mathsf{a}\mathsf{x} &= \mathsf{S}\,\mathsf{A}\mathsf{B}\times\mathsf{x} - \mathsf{P}\,\mathsf{h}\mathsf{d}2\times\mathsf{x}^{\,2}/2 \\ &- (\mathsf{P}\,\mathsf{h}\mathsf{d}1 - \mathsf{P}\,\mathsf{h}\mathsf{d}2)\times\mathsf{x}^{\,3}/(6\times\mathsf{H}\mathsf{o}) + \mathsf{M}\mathsf{A}\mathsf{B} \end{aligned} \qquad = \quad -3.\,\,455\,\,\mathsf{k}\,\mathsf{N}\cdot\mathsf{m}$$

SL421000

| 部材  | 照査点                                                                                     | 距 離<br>x(m)                                                        | 曲げモーメント<br>M (N*m)                                           | せん断力<br>S(N)                             | [ /単位長]<br>軸 力<br>N(N)                                      |
|-----|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|
| 頂版  | 3,S3 端 部<br>2 ハンチ始点                                                                     | 0.070                                                              | -9392                                                        | 51173<br>*****                           | 20356                                                       |
| 贝贝瓜 | S2 τ 点                                                                                  | 0. 220<br>0. 225                                                   | -2378<br>633                                                 | 37939                                    | 20356<br>20356                                              |
|     | 1 中 央                                                                                   | 0. 223                                                             | 12868                                                        | 0                                        | 20356                                                       |
| 底版  | 9, S9 端 部<br>10 ハンチ始点<br>S10 τ 点<br>11 中 央                                              | 0. 070<br>0. 220<br>0. 225<br>0. 870                               | -10437<br>-2802<br>476<br>13794                              | 55704<br>******<br>41297<br>0            | 24176<br>24176<br>24176<br>24176                            |
| 側壁  | 4, S4 上 端部<br>5 上 ν λ f 点<br>S5 上 τ 点<br>6 中 間<br>S7 下 τ 点<br>7 下 ν λ f 点<br>8, S8 下 端部 | 1. 080<br>0. 930<br>0. 935<br>0. 590<br>0. 225<br>0. 230<br>0. 080 | -9392<br>-6717<br>-5669<br>-3455<br>-6084<br>-7296<br>-10437 | -20356 ***** -12665 0 14592 ****** 24176 | 51173<br>51759<br>52052<br>53399<br>54825<br>55118<br>55704 |





#### 3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$ 

但し、軸力は

頂版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

# [ /単位長 ]

| 部材 | 点     | $M$ $(kN \cdot m)$ | N<br>(kN) | e<br>(cm) | c<br>(cm) | Ms<br>(kN⋅m) | CASE<br>M |
|----|-------|--------------------|-----------|-----------|-----------|--------------|-----------|
|    | 端部    | -10. 917           | 6. 359    | 171. 68   | 7. 00     | 11. 362      | 1         |
| 頂版 | ハンチ始点 | -3. 531            | 6. 359    | 55. 53    | 4. 50     | 3.817        | 1         |
|    | 中 央   | 22. 902            | 6. 359    | 360. 16   | 4. 50     | 23. 189      | 1         |
|    | 端部    | -11. 893           | 21. 276   | 55. 90    | 7. 00     | 13. 382      | 3         |
| 底版 | ハンチ始点 | -2. 621            | 21. 276   | 12.32     | 4. 50     | 3. 579       | 3         |
|    | 中 央   | 17. 532            | 21. 276   | 82.40     | 4. 50     | 18.490       | 3         |
|    | 上端部   | -10. 917           | 49.871    | 21.89     | 6.00      | 13. 909      | 1         |
|    | 上ハンチ点 | -10.001            | 50. 457   | 19.82     | 3. 50     | 11. 767      | 1         |
| 側壁 | 中間    | -7. 490            | 53. 401   | 14. 03    | 3. 50     | 9.359        | 1         |
|    | 下ハンチ点 | -9. 131            | 67. 058   | 13. 62    | 3. 50     | 11. 478      | 3         |
|    | 下端部   | -11. 893           | 67. 644   | 17. 58    | 6.00      | 15. 952      | 3         |

注1) CASE のMは、曲げモーメント抽出ケースを示す。

#### 4 必要有効高および必要鉄筋量

#### 4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$
  
 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$ 

$$d = c1 \times \sqrt{(Ms / b)}$$
  $h = d + d' < T$ 

$$h = d + d' < T$$

ここに、 M : 軸力を考慮した曲げモーメント  $(k N \cdot m/m)$ b : 単位長 (cm) d': 鉄筋かぶり (cm) h : 必要部材厚 (cm) n : ヤング係数比 (15)

#### 4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

| 部材 | 点     | Ms               | 必要有効局  | 必要部材厚     | 部材厚    | 必要鉄筋量        |
|----|-------|------------------|--------|-----------|--------|--------------|
|    |       | $(kN \cdot m/m)$ | d (cm) | d+d' (cm) | T (cm) | $As(cm^2/m)$ |
|    | 端部    | 11. 362          | 6. 71  | 10. 21    | 21.00  | 4. 013       |
| 頂版 | ハンチ始点 | 3. 817           | 3.89   | 7. 39     | 16. 00 | 1.646        |
|    | 中 央   | 23. 189          | 9.58   | 13.08     | 16.00  | 13. 138      |
| -  | 端部    | 13. 382          | 7. 28  | 10.78     | 21.00  | 3. 899       |
| 底版 | ハンチ始点 | 3. 579           | 3. 76  | 7. 26     | 16. 00 | 0. 582       |
|    | 中 央   | 18. 490          | 8. 55  | 12.05     | 16.00  | 9. 311       |
|    | 上端部   | 13.909           | 7.42   | 10.92     | 19.00  | 3.096        |
|    | 上ハンチ点 | 11. 767          | 6. 82  | 10. 32    | 14. 00 | 4. 859       |
| 側壁 | 中間    | 9.359            | 6.09   | 9. 59     | 14.00  | 2.954        |
|    | 下心チ点  | 11. 478          | 6. 74  | 10. 24    | 14. 00 | 3. 613       |
|    | 下端部   | 15. 952          | 7. 95  | 11.45     | 19.00  | 2. 945       |
|    |       |                  |        | 1   1   / | T      | CHECK OV     |

d + d' < T CHECK OK

# 5 配筋及び実応力度

実応力度は、次式により計算する。

#### 5.1 コンクリート及び鉄筋

$$\sigma c = N / \{b \times x / 2 - n \times As / x (c + T / 2 - x)\}$$
  
$$\sigma s = n \times \sigma c / x \times (c + T / 2 - x)$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積  $(cm^2/m)$ x : 中心軸。次の3次元方程式より求める。  $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6  $\times$  n  $\times$  As / b  $\times$  (e + c)  $\times$  x  $-6 \times n \times As / b \times (c + T / 2)$  $\times$  (e + c) = 0

e : 偏位量 (M / N) (cm)

#### 配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 16 - 16
 D 10 - 16
 D 13 - 16
 D 10 - 16
 D -0 - 0
 D 10 - 16

 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0

| 部材 | 点     | 部材幅    | 使用鉄筋量        | X      | 実 応   | 力      | 度(N/mm²) |
|----|-------|--------|--------------|--------|-------|--------|----------|
|    |       | b (cm) | $As(cm^2/m)$ | (cm)   | σс    | σs     | σ s'     |
|    | 端部    | 100.00 | 5. 706       | 4.871  | 2.94  | 114. 3 | 0.0      |
| 頂版 | ハンチ始点 | 100.00 | 5. 706       | 4. 180 | 1.64  | 49. 1  | 0.0      |
|    | 中 央   | 100.00 | 15.888       | 5.754  | 7.62  | 133.9  | 0.0      |
|    | 端部    | 100.00 | 5. 706       | 5. 282 | 3. 22 | 111.7  | 0.0      |
| 底版 | ハンチ始点 | 100.00 | 5. 706       | 5.643  | 1.19  | 21.8   | 0.0      |
|    | 中 央   | 100.00 | 10. 136      | 5.077  | 6.74  | 147.8  | 0.0      |
|    | 上端部   | 100.00 | 5. 706       | 5. 716 | 3. 58 | 91. 9  | 0.0      |
|    | 上ハンチ点 | 100.00 | 5. 706       | 4.204  | 6. 15 | 138. 2 | 0.0      |
| 側壁 | 中間    | 100.00 | 5. 706       | 4.565  | 4. 57 | 89. 1  | 0.0      |
|    | 下ハンチ点 | 100.00 | 5. 706       | 4.604  | 5.56  | 106.8  | 0.0      |
|    | 下端部   | 100.00 | 5. 706       | 6.118  | 3.87  | 89. 1  | 0.0      |

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$  CHECK OK

# 6 せん断力に対する検討

# 6.1 せん断力照査点の断面力と最大値抽出

| 部材  | 断面力 | CASE-1  | CASE-2  | CASE-3  | CASE-4  | CASE-5 | CASE-6 | CASE-7 | CASE-8 |
|-----|-----|---------|---------|---------|---------|--------|--------|--------|--------|
|     | S   | 47. 976 | 5. 431  | 46. 791 | 37. 939 |        |        |        |        |
| 頂版  | M   | 0.091   |         |         |         |        |        |        |        |
| τ点  | N   | 6.359   |         |         |         |        |        |        |        |
|     | 最大  | 0       |         |         |         |        |        |        |        |
|     | S   | 40. 332 | 8. 789  | 50. 150 | 41. 297 |        |        |        |        |
| 底版  | M   |         |         | 1. 359  |         |        |        |        |        |
| τ点  | N   |         |         | 21. 276 |         |        |        |        |        |
|     | 最大  |         |         | 0       |         |        |        |        |        |
|     | S   | -5. 463 | -3. 719 | -10.890 | -12.665 |        |        |        |        |
| 側壁上 | M   |         |         |         | -5. 669 |        |        |        |        |
| τ点  | N   |         |         |         | 52. 052 |        |        |        |        |
|     | 最大  |         |         |         | 0       |        |        |        |        |
|     | S   | 0.352   | 5.646   | 12.817  | 14. 592 |        |        |        |        |
| 側壁下 | M   |         |         |         | -6.084  |        |        |        |        |
| τ点  | N   |         |         |         | 54.825  |        |        |        |        |
|     | 最大  |         | -       |         | 0       |        |        |        |        |

ここに、S: せん断力(kN)、M: モーメント(kN・m)、N: 軸力(kN)を示す。

# 6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$au = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot \tau a$$
ここに、 S : せん断力 (kN) d : 有効高さ (cm) b : 部材幅 (cm)

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

# ① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

| 有効高さ (m) | 0.3以下 | 1. 0 | 3. 0 | 5. 0 | 10.0以上 |
|----------|-------|------|------|------|--------|
| 補正係数(Ce) | 1. 4  | 1. 0 | 0.7  | 0.6  | 0.5    |

# ② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

| Г | コロビタサムケ いょ (0/) |      |     |     |      | 1 0 01 1 |
|---|-----------------|------|-----|-----|------|----------|
|   | 引張鉄筋比(%)        | 0.1  | 0.2 | 0.3 | 0.5  | 1.0以上    |
| ſ | 補正係数(Cpt)       | 0. 7 | 0.9 | 1.0 | 1. 2 | 1.5      |

# ③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M  $Mo = N/Ac \cdot Ic/y$   $t \in \mathbb{Z}$   $1 \leq Cn \leq 2$ 

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m) N:断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

# 補正係数①、②を求める。

| 照査位置    | 部材厚    | かぶり   | 有効高       | Се    | 引張鉄筋  |         | 鉄筋比    | Cpt    |
|---------|--------|-------|-----------|-------|-------|---------|--------|--------|
|         | T      | ď'    | d         |       | 径-本数  | As      | Pt     |        |
|         | (m)    | (m)   | (m)       |       |       | (cm2)   | (%)    |        |
| 頂版 τ 点  | 0.160  | 0.035 | 0. 125000 | 1.400 | D16-8 | 15. 888 | 1. 271 | 1.500  |
| 底版 τ 点  | 0.160  | 0.035 | 0. 125000 | 1.400 | D13-8 | 10. 136 | 0.811  | 1. 387 |
| 側壁上 τ 点 | 0. 142 | 0.035 | 0. 106667 | 1.400 | D10-8 | 5. 706  | 0.535  | 1.221  |
| 側壁下 τ 点 | 0.142  | 0.035 | 0. 106667 | 1.400 | D10-8 | 5. 706  | 0.535  | 1.221  |

# 補正係数③を求める。

| 照査位置    | M        | N       | Ac      | Ic       | У       | Мо       | Cn     |
|---------|----------|---------|---------|----------|---------|----------|--------|
|         | (kN • m) | (kN)    | (m2)    | (m4)     | (m)     | (kN • m) |        |
| 頂版τ点    | 0.091    | 6.359   | 0.16000 | 0.000341 | 0.08000 | 0. 169   | 2.000  |
| 底版 τ 点  | 1. 359   | 21. 276 | 0.16000 | 0.000341 | 0.08000 | 0. 567   | 1.417  |
| 側壁上τ点   | -5. 669  | 52. 052 | 0.14200 | 0.000239 | 0.07100 | 1. 234   | 1. 218 |
| 側壁下 τ 点 | -6. 084  | 54. 825 | 0.14200 | 0.000239 | 0.07100 | 1. 300   | 1. 214 |

# 補正した許容せん断応力度

| 照査位置    | τα     |       | 補正     |       |        |
|---------|--------|-------|--------|-------|--------|
|         |        | Се    | Cpt    | Cn    | τа     |
| 頂版 τ 点  | 0. 260 | 1.400 | 1.500  | 2.000 | 1. 092 |
| 底版 τ 点  | 0.260  | 1.400 | 1. 387 | 1.417 | 0. 715 |
| 側壁上 τ 点 | 0. 260 | 1.400 | 1. 221 | 1.218 | 0. 541 |
| 側壁下 τ 点 | 0.260  | 1.400 | 1. 221 | 1.214 | 0.539  |

#### せん断応力度の照査

| 照査位置    | せん断力    | 応力度     | 補正      | 判定 |  |  |  |
|---------|---------|---------|---------|----|--|--|--|
|         | S       | τ       | τα      |    |  |  |  |
|         | (kN)    | (N/mm2) | (N/mm2) |    |  |  |  |
| 頂版 τ 点  | 47. 976 | 0.384   | 1. 092  | OK |  |  |  |
| 底版 τ 点  | 50. 150 | 0.401   | 0. 715  | OK |  |  |  |
| 側壁上 τ 点 | 12.665  | 0. 119  | 0. 541  | OK |  |  |  |
| 側壁下 τ 点 | 14. 592 | 0. 137  | 0. 539  | OK |  |  |  |

以上