

○内空寸法 : 内 幅(B) 900 mm

内 高(H) 600 mm 長 さ(L) 2000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B)  $900 \times (H) 600 \times (L) 2000 \text{ [mm]}$ 

:  $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 :  $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) :  $\gamma b = 19.0 [kN/m^3]$ 路盤材 (地下水位以下) :  $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート :  $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) :  $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) :  $\gamma w = 9.0 [kN/m^3]$ 

1.3 土圧係数 平 ) (水 : Ka = 0.500(鉛 直 )  $\alpha = 1.000$ 

(上 載 ) : T'荷重 横断通行 1.4 活荷重

(輪接地幅 a = 0.20m b = 0.50m)

( 側 載 ) :  $Q = 10.0 [kN/m^2]$ 

i = 0.3001.5 衝擊係数

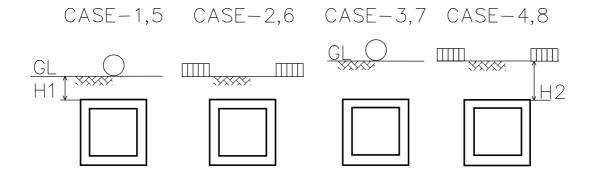
1.6 鉄筋かぶり : 頂 版 底 版 側 壁

> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm


1.7 断面力低減係数(土被りH1) :  $\beta = 0.9$  (土被りH2) :  $\beta = 0.9$ 

1.8 許容応力度

鉄筋引張応力度 :  $\sigma$  sa = 160 [N/mm<sup>2</sup>] :  $\sigma sy = 295 \left[ N/mm^2 \right]$ 鉄筋降伏点応力度 コンクリート


設計基準強度 :  $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 :  $\sigma ca = 11.7 [N/mm^2]$ せん断応力度 :  $\tau a = 0.260 [N/mm^2]$ 

#### 1.9 標準断面図



[単位:mm]

#### 1.10 荷重の組合せ



### [荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

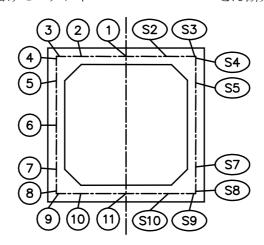
CASE 2, 4, 6, 8 は、荷重がカルバート側載の場合

### また

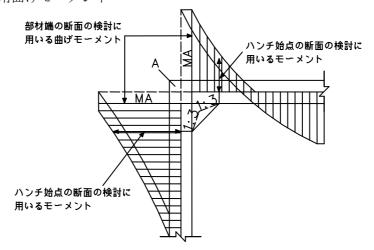
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

#### また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

#### 2 断面力計算

ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力



## 1) 断面検討用曲げモーメント



### 2) せん断力に対する照査



## b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分  ${\cal C}$ の 1/3 まで大きくとります。

h' = T + C'/3

### 2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

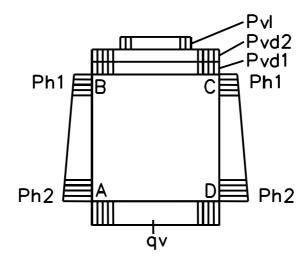
 $P vd1 = \gamma c \times T1 \qquad = 3.185 \text{ kN/m}^2$ 

- (2) 土圧
  - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m<sup>2</sup>

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 2.835 \text{ kN/m}^2$$


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 9.405 \text{ kN/m}^{2}$$

- (3) 活荷重
  - ① 輸分布幅  $u = a + 2 \times H1$  = 0.600 m  $v = b + 2 \times H1$  = 0.900 m
  - ② 活荷重  $P1 = 0.4 \times T \times (1 + i) \times \beta$  = 117.000 kN  $Pv1 = 2 \times P1/2.75/u$  = 141.818 kN/m<sup>2</sup>
- (4) 底版反力

$$q v = P vd1 + P vd2 + \{P v1 \times u + \gamma c \times (2 \times T3 \times Ho + 2 \times C^{2})\} / Bo = 95.288 \text{ kN/m}^{2}$$

### [ 荷重図 ]



## 2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

## (1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 0.709  
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$  = 0.709  
 $\text{N1} = 2 + \alpha = 2.709$ ,  $\text{N2} = 2 + \beta = 2.709$ 

### ② 荷 重 項

 $CAD = q v \times B o^2 / 12$  = 8.424 kN·m

CBC = 
$$\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$$
 = 10.396 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.301 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.243 \text{ kN} \cdot \text{m}$$

#### ③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -5.074 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 5.622 \text{ kN} \cdot \text{m}$$

### ④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -4.828 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 4.828 kN \cdot m$$

$$MBA = 2 \times \theta B + \theta A + CBA = 6.412 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -6.412 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

### 2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
  - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\} / 2 - (Pvd1 + Pvd2) \times x = 45.120 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 10.137 \text{ kN} \cdot \text{m}$$

- (2) 底 版
  - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 31.922 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 7.809 kN \cdot m$$

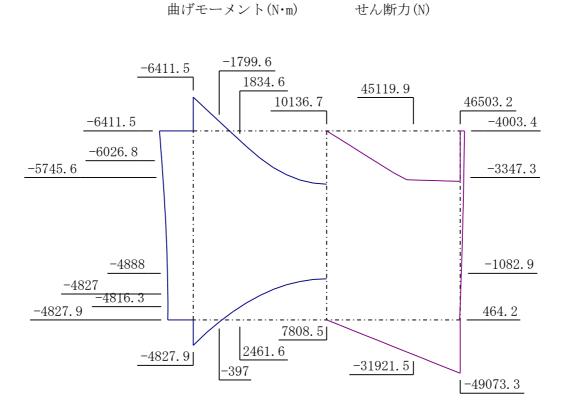
- (3) 側壁
  - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -1.083 \text{ kN}$$

S XBA = 
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$
  
 $-(MAB + MBA)/Ho$   
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$  = -3.347 kN


② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho) = 0$$
  
上式を用いて  $x$  を求めると。  $x$  = 0.051 m

$$\begin{array}{lll} Mmax &=& SAB \times x - Phd2 \times x^{2}/2 \\ &-& (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB \end{array} \qquad = \quad -4.816 \text{ kN} \cdot m \end{array}$$

|               |        | [ /単    | 位長]   |       |
|---------------|--------|---------|-------|-------|
| 部材 照査点        | 距離     | 曲げモーメント | せん断力  | 軸力    |
|               | x (m)  | M (N*m) | S (N) | N (N) |
| 3,S3 端 部      | 0.065  | -6412   | 46503 | 4003  |
| 頂版 2 ハンチ始点    | 0. 165 | -1800   | ***** | 4003  |
| S2 τ 点        | 0.180  | 1835    | 45120 | 4003  |
| 1 中 央         | 0. 515 | 10137   | 0     | 4003  |
| <br>9, S9 端 部 | 0. 065 | -4828   | 49073 | 464   |
| 底版 10 パチ始点    | 0. 165 | -397    | ***** | 464   |
| S10 τ 点       | 0.180  | 2462    | 31922 | 464   |
| 11 中 央        | 0. 515 | 7809    | 0     | 464   |
| 4, S4 上 端部    | 0. 665 | -6412   | -4003 | 46503 |
| 5 上バチ点        | 0.565  | -6027   | ***** | 46855 |
| S5 上 τ点       | 0.550  | -5746   | -3347 | 47137 |
| 側壁6 中間        | 0.051  | -4816   | 0     | 48894 |
| S7 下 τ 点      | 0. 180 | -4888   | -1083 | 48440 |
| 7 下ハンチ点       | 0. 165 | -4827   | ***** | 48721 |
| 8,88 下 端部     | 0.065  | -4828   | 464   | 49073 |



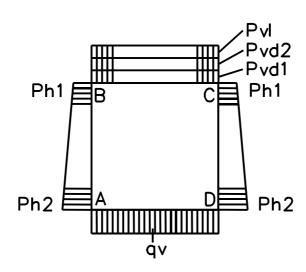
## 2.2.1 設計荷重 (CASE - 2)

(1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 3.185 \text{ kN/m}^2$$

- (2) 土圧
  - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m<sup>2</sup>


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2)\,\} & +P\,q \end{array} \\ = & 7.\,835\,\,k\,N/m^2 \\ P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2\!+\!Ho)\,\} & +P\,q \end{array} \\ = & 14.\,405\,\,k\,N/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で  $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$  とする。

(4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 12.675 \text{ kN/m}^2$  [ 荷重図 ]



## 2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

## (1) ラーメン計算

- ① 係 数
  - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 0.709$   $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 0.709$   $\text{N1} = 2 + \alpha = 2.709, \quad \text{N2} = 2 + \beta = 2.709$
- ② 荷 重 項

$$CAD = q v \times B o^2 / 12$$
 = 1.121 kN·m

CBC = 
$$\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$$
 = 0.679 kN·m

$$CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.523 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.465 \text{ kN} \cdot \text{m}$$

#### ③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -0.289 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 0.186 \text{ kN} \cdot \text{m}$$

#### ④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -0.916 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 0.916 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 0.547 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -0.547 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

### 2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
  - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 2.575 \text{ kN}$$

② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o}^2 / 8 + P_{v1} \times B_{o}^2 / 8 + MBC = 0.472 \text{ kN} \cdot \text{m}$$

- (2) 底 版
  - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -1.599 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 0.765 kN \cdot m$$

- (3) 側壁
  - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 2.516 \text{ kN}$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

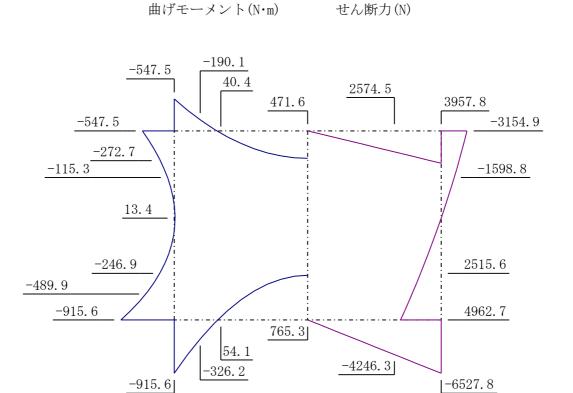
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -1.599 kN$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2/(2 \times Ho)$$
 = 0  
上式を用いて x を求めると。 x = 0.393 m


$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$

$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= 0.013 \text{ kN} \cdot \text{m}$$

SL404000

| 部材 | 照査点                                                                           | 距 離<br>x(m)                                                        | 曲げモーメント<br>M (N*m)                                 | せん断力<br>S (N)                                   | [ /単位長]<br>軸 力<br>N(N)                               |
|----|-------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------------------|
| 頂版 | 3, S3 端 部<br>2 パゲ始点<br>S2 τ 点<br>1 中 央                                        | 0. 065<br>0. 165<br>0. 180<br>0. 515                               | -548<br>-190<br>40<br>472                          | 3958<br>******<br>2575<br>0                     | 3155<br>3155<br>3155<br>3155<br>3155                 |
| 底版 | 9, S9 端 部<br>10 パンチ始点<br>S10 τ 点<br>11 中 央                                    | 0. 065<br>0. 165<br>0. 180<br>0. 515                               | -916<br>-326<br>54<br>765                          | 6528<br>******<br>4246<br>0                     | 4963<br>4963<br>4963<br>4963                         |
| 側壁 | 4, S4 上 端部<br>5 上ννf点<br>S5 上 τ点<br>6 中 間<br>S7 下 τ点<br>7 下ννf点<br>8, S8 下 端部 | 0. 665<br>0. 565<br>0. 550<br>0. 393<br>0. 180<br>0. 165<br>0. 065 | -548<br>-273<br>-115<br>13<br>-247<br>-490<br>-916 | -3155<br>******<br>-1599<br>0<br>2516<br>****** | 3958<br>4310<br>4592<br>5144<br>5894<br>6176<br>6528 |



 $= 34.605 \text{ kN/m}^2$ 

 $= 13.724 \text{ kN/m}^2$ 

## 2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 3.185 \text{ kN/m}^2$ 

- (2) 土圧
  - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m<sup>2</sup>

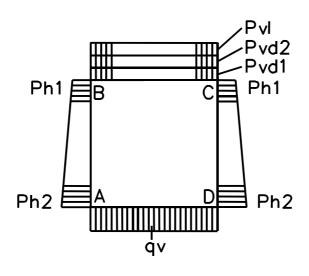
② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \}$$

$$= 28.035 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \}$$

 $+ \gamma s \times (H2 - t - t b + T1/2 + Ho)$ 


 $Pv1 = 2 \times P1/2.75/u$ 

(3) 活荷重

① 輸分布幅 
$$u = a + 2 \times H2$$
  $= 6.200 \text{ m}$   $v = b + 2 \times H2$   $= 6.500 \text{ m}$   $= 6.500 \text{ m}$   $= 117.000 \text{ kN}$ 

(4) 底版反力 q v =  $P v d1 + P v d2 + P v 1 + \gamma c \times (2 \times T 3 \times Ho + 2 \times C^2) / Bo = 76.800 \text{ kN/m}^2$ 

#### [ 荷重図 ]



# 2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

## (1) ラーメン計算

- ① 係 数
  - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 0.709$   $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 0.709$   $\text{N1} = 2 + \alpha = 2.709, \quad \text{N2} = 2 + \beta = 2.709$
- ② 荷 重 項

CAD =  $q v \times B o^2 / 12$  = 6.790 kN·m CBC =  $\{(Pvd1 + Pvd2 + Pv1) \times B o^2\} / 12$  = 6.349 kN·m CAB =  $(Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60$  = 1.420 kN·m

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 1.362 \text{ kN} \cdot \text{m}$ 

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -3.082 \text{ kN} \cdot \text{m}$   $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 2.979 \text{ kN} \cdot \text{m}$ 

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -4.605 \text{ kN} \cdot \text{m}$ 

 $MAD = \beta \times \theta A + CAD = 4.605 \text{ kN} \cdot \text{m}$ 

 $MBA = 2 \times \theta B + \theta A + CBA = 4.237 \text{ kN} \cdot \text{m}$ 

 $MBC = \alpha \times \theta B - CBC = -4.237 \text{ kN} \cdot \text{m}$ 

MAB + MAD = 0

MBA + MBC = 0

### 2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
  - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 24.056 kN$$

② 曲げモーメント

$$M_{\text{max}} = (P_{\text{vd1}} + P_{\text{vd2}}) \times B_{\text{o}}^2 / 8 + P_{\text{v1}} \times B_{\text{o}}^2 / 8 + MBC = 5.285 \text{ kN} \cdot \text{m}$$

- (2) 底 版
  - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 25.728 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 5.579 kN \cdot m$$

- (3) 側壁
  - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 6.253 \text{ kN}$$

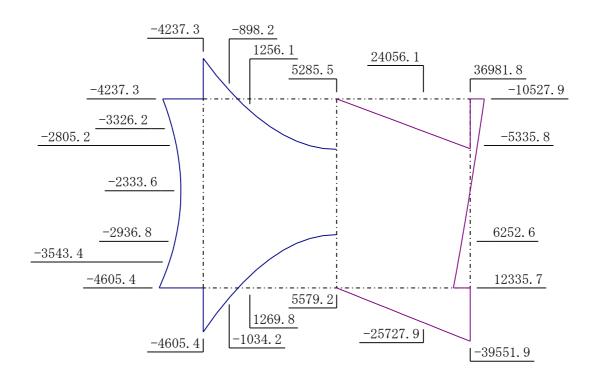
S XBA = 
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$
  
 $- (MAB + MBA) / Ho$   
 $- Phd2 \times x + (Phd2 - Phd1) \times x^2 / (2 \times Ho)$  = -5.336 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0  
上式を用いて x を求めると。 x = 0.375 m

$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$


$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= -2.334 \text{ kN} \cdot \text{m}$$

SL404000

| 部材 | 照査点                                                                           | 距 離<br>x(m)                                                        | 曲げモーメント<br>M (N*m)                                          | せん断力<br>S(N)                           | [ /単位長]<br>軸 力<br>N(N)                                      |
|----|-------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|
| 頂版 | 3, S3 端 部                                                                     | 0. 065                                                             | -4237                                                       | 36982                                  | 10528                                                       |
|    | 2 ///f始点                                                                      | 0. 165                                                             | -898                                                        | ******                                 | 10528                                                       |
|    | S2 τ 点                                                                        | 0. 180                                                             | 1256                                                        | 24056                                  | 10528                                                       |
|    | 1 中 央                                                                         | 0. 515                                                             | 5286                                                        | 0                                      | 10528                                                       |
| 底版 | 9, S9 端 部                                                                     | 0. 065                                                             | -4605                                                       | 39552                                  | 12336                                                       |
|    | 10 ///f始点                                                                     | 0. 165                                                             | -1034                                                       | ******                                 | 12336                                                       |
|    | S10 τ 点                                                                       | 0. 180                                                             | 1270                                                        | 25728                                  | 12336                                                       |
|    | 11 中 央                                                                        | 0. 515                                                             | 5579                                                        | 0                                      | 12336                                                       |
| 側壁 | 4, S4 上 端部<br>5 上ννf点<br>S5 上 τ点<br>6 中 間<br>S7 下 τ点<br>7 下ννf点<br>8, S8 下 端部 | 0. 665<br>0. 565<br>0. 550<br>0. 375<br>0. 180<br>0. 165<br>0. 065 | -4237<br>-3326<br>-2805<br>-2334<br>-2937<br>-3543<br>-4605 | -10528 ***** -5336 0 6253 ****** 12336 | 36982<br>37334<br>37616<br>38232<br>38918<br>39200<br>39552 |





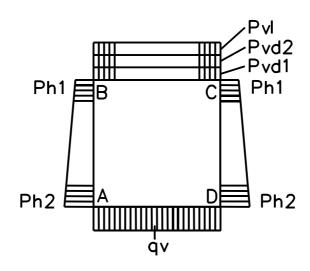
- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

$$P vd1 = \gamma c \times T1$$
 = 3.185 kN/m<sup>2</sup>

- (2) 土圧
  - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m<sup>2</sup>

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.035 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 39.605 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で  $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$  とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 63.075 \text{ kN/m}^2$  [ 荷重図 ]



 $= 1.584 \text{ kN} \cdot \text{m}$ 

### 2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$ 

## (1) ラーメン計算

- ① 係 数
  - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 0.709$   $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 0.709$   $\text{N1} = 2 + \alpha = 2.709, \quad \text{N2} = 2 + \beta = 2.709$
- ② 荷 重 項

$$CAD = q v \times B o^{2} / 12 = 5.576 \text{ kN} \cdot \text{m}$$

$$CBC = \{ (Pvd1 + Pvd2 + Pv1) \times B o^{2} \} / 12 = 5.135 \text{ kN} \cdot \text{m}$$

$$CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 1.642 \text{ kN} \cdot \text{m}$$

## ③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1)$$
 = -2.242 kN·m  
 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1)$  = 2.139 kN·m

#### ④ 端モーメント

$$\begin{aligned} \text{MAB} &= 2 \times \theta \, \text{A} + \theta \, \text{B} - \text{CAB} \\ \text{MAD} &= \beta \times \theta \, \text{A} + \text{CAD} \\ \text{MBA} &= 2 \times \theta \, \text{B} + \theta \, \text{A} + \text{CBA} \\ \text{MBC} &= \alpha \times \theta \, \text{B} - \text{CBC} \\ \text{MAB} + \text{MAD} &= 0 \\ \text{MBA} + \text{MBC} &= 0 \end{aligned}$$

## 2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
  - ① せん断力 SXBC = (Pvd1+Pvd2+Pv1)×Bo/2-(Pvd1+Pvd2+Pv1)×x = 19.459 kN
  - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC = 4.083 \text{ kN} \cdot \text{m}$$

- (2) 底 版
  - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 21.130 \text{ kN}$$

② 曲げモーメント

$$Mmax = q v \times B o^{2} / 8 - MAD \qquad = 4.377 \text{ kN} \cdot \text{m}$$

- (3) 側壁
  - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

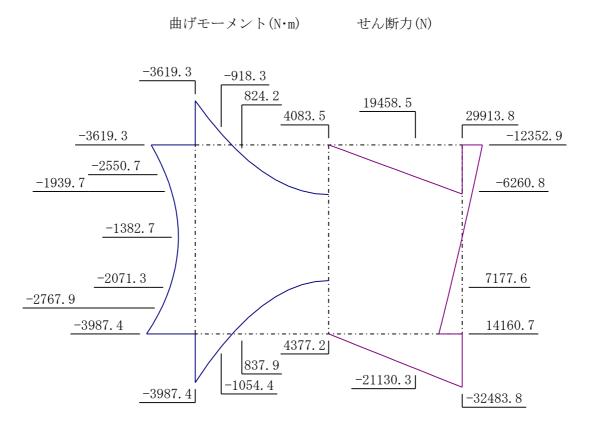
$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 7.178 \text{ kN}$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -6.261 \text{ kN}$$

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0  
上式を用いて x を求めると。 x = 0.373 m

$$\begin{aligned} \mathsf{M}\mathsf{m}\mathsf{a}\mathsf{x} &= \mathsf{S}\,\mathsf{A}\mathsf{B}\times\mathsf{x} - \mathsf{P}\,\mathsf{h}\mathsf{d}2\times\mathsf{x}^{\,2}/2 \\ &- (\mathsf{P}\,\mathsf{h}\mathsf{d}1 - \mathsf{P}\,\mathsf{h}\mathsf{d}2)\times\mathsf{x}^{\,3}/\left(6\times\mathsf{H}_{\mathsf{O}}\right) + \mathsf{M}\mathsf{A}\mathsf{B} \end{aligned} \qquad = -1.383 \; \mathsf{k}\,\mathsf{N}\cdot\mathsf{m}$$

SL404000

| 部材 | 照査点        | 距<br>x(m) | 曲げモーメント<br>M (N*m) | せん断力<br>S (N) | [ /単位長]<br>軸 力<br>N(N) |
|----|------------|-----------|--------------------|---------------|------------------------|
| 頂版 | 3, S3 端 部  | 0. 065    | -3619              | 29914         | 12353                  |
|    | 2 //νf始点   | 0. 165    | -918               | ******        | 12353                  |
|    | S2 τ 点     | 0. 180    | 824                | 19459         | 12353                  |
|    | 1 中 央      | 0. 515    | 4084               | 0             | 12353                  |
| 底版 | 9, S9 端 部  | 0. 065    | -3987              | 32484         | 14161                  |
|    | 10 //ンチ始点  | 0. 165    | -1054              | ******        | 14161                  |
|    | S10 τ 点    | 0. 180    | 838                | 21130         | 14161                  |
|    | 11 中 央     | 0. 515    | 4377               | 0             | 14161                  |
| 側壁 | 4, S4 上 端部 | 0. 665    | -3619              | -12353        | 29914                  |
|    | 5 上ννf点    | 0. 565    | -2551              | ******        | 30266                  |
|    | S5 上 τ 点   | 0. 550    | -1940              | -6261         | 30548                  |
|    | 6 中 間      | 0. 373    | -1383              | 0             | 31171                  |
|    | S7 下 τ 点   | 0. 180    | -2071              | 7178          | 31850                  |
|    | 7 下ννf点    | 0. 165    | -2768              | ******        | 32132                  |
|    | 8, S8 下 端部 | 0. 065    | -3987              | 14161         | 32484                  |



#### 3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$ 

但し、軸力は

項版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

### [ /単位長 ]

| 部材 | 点     | $M$ $(kN \cdot m)$ | N<br>(kN) | e<br>(cm) | c<br>(cm) | Ms<br>(kN⋅m) | CASE<br>M |
|----|-------|--------------------|-----------|-----------|-----------|--------------|-----------|
|    | 端部    | -6. 412            | 4. 003    | 160. 15   | 4. 67     | 6. 598       | 1         |
| 頂版 | ハンチ始点 | -1.800             | 4. 003    | 44. 95    | 3.00      | 1. 920       | 1         |
|    | 中 央   | 10. 137            | 4.003     | 253. 20   | 3.00      | 10. 257      | 1         |
|    | 端部    | -4. 828            | 0.464     | 040.05    | 4. 67     | 4.850        | 1         |
| 底版 | ハンチ始点 | -0. 397            | 0. 464    | 85. 52    | 3.00      | 0.411        | 1         |
|    | 中 央   | 7.809              | 0.464     | 682. 14   | 3.00      | 7.822        | 1         |
|    | 上端部   | -6. 412            | 46. 503   | 13. 79    | 4. 67     | 8. 582       | 1         |
|    | 上ハンチ点 | -6. 027            | 46. 855   | 12.86     | 3.00      | 7. 432       | 1         |
| 側壁 | 中間    | -4.816             | 48. 894   | 9.85      | 3.00      | 6. 283       | 1         |
|    | 下小兆点  | -4. 827            | 48. 721   | 9. 91     | 3.00      | 6. 289       | 1         |
|    | 下端部   | -4.605             | 39. 552   | 11.64     | 4. 67     | 6. 451       | 3         |

注1) CASE のMは、曲げモーメント抽出ケースを示す。

#### 4 必要有効高および必要鉄筋量

#### 4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$
  
 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$ 

$$d = c1 \times \sqrt{(Ms / b)}$$
  $h = d + d' < T$ 

$$h = d + d' < T$$

ここに、 M : 軸力を考慮した曲げモーメント  $(kN \cdot m/m)$ b : 単位長 (cm) d': 鉄筋かぶり (cm) h : 必要部材厚 (cm) n : ヤング係数比 (15)

#### 4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$ 

| 部材 | 点     | Ms               | 必要有効高  | 必要部材厚     | 部材厚    | 必要鉄筋量        |
|----|-------|------------------|--------|-----------|--------|--------------|
|    |       | $(kN \cdot m/m)$ | d (cm) | d+d' (cm) | T (cm) | $As(cm^2/m)$ |
|    | 端部    | 6. 598           | 5. 11  | 8. 61     | 16. 33 | 3. 253       |
| 頂版 | ハンチ始点 | 1. 920           | 2.76   | 6. 26     | 13. 00 | 1. 096       |
|    | 中 央   | 10. 257          | 6. 37  | 9.87      | 13.00  | 7.498        |
|    | 端部    | 4.850            | 4. 38  | 7.88      | 16. 33 | 2. 516       |
| 底版 | ハンチ始点 | 0. 411           | 1.28   | 4. 78     | 13. 00 | 0. 250       |
|    | 中 央   | 7.822            | 5. 56  | 9.06      | 13.00  | 5. 789       |
|    | 上端部   | 8. 582           | 5.83   | 9. 33     | 16. 33 | 1. 701       |
|    | 上ハンチ点 | 7. 432           | 5. 42  | 8. 92     | 13. 00 | 2. 585       |
| 側壁 | 中間    | 6. 283           | 4.99   | 8.49      | 13.00  | 1. 564       |
|    | 下心チ点  | 6. 289           | 4. 99  | 8. 49     | 13. 00 | 1. 579       |
|    | 下端部   | 6. 451           | 5.05   | 8. 55     | 16. 33 | 0.950        |
|    |       |                  |        | d+d' <    | T      | CHECK OK     |

#### 5 配筋及び実応力度

実応力度は、次式により計算する。

#### 5.1 コンクリート及び鉄筋

$$\sigma c = N / \{b \times x / 2 - n \times As / x (c + T / 2 - x)\}$$
  
$$\sigma s = n \times \sigma c / x \times (c + T / 2 - x)$$

 ここに、 N: 軸力
 (kN)

 b: 部材幅
 (cm)

 T: 部材厚
 (cm)

 c: 部材中心軸と鉄筋間距離
 (cm²/m)

 As: 主鉄筋断面積
 (cm²/m)

 x: 中心軸。次の3次元方程式より求める。 (cm)

 x³ - 3 × (T / 2 - e) × x²

 + 6 × n × As / b × (e + c) × x

 - 6 × n × As / b × (c + T / 2)

 $\times \ (\ e \ + \ c \ ) = 0$   $e \ : 偏位量 \ (M \ / \ N) \ (cm)$ 

### 配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 13 - 8
 D 10 - 16
 D 13 - 8
 D 10 - 16
 D -0 - 0
 D 10 - 16

 D 10 - 8
 D 0 - 0
 D 10 - 8
 D 0 - 0
 D 0 - 0
 D 0 - 0

| 部材 | 点     | 部材幅    | 使用鉄筋量        | X      | 実 応   | 力     | 度 $(N/mm^2)$ |
|----|-------|--------|--------------|--------|-------|-------|--------------|
|    |       | b (cm) | $As(cm^2/m)$ | (cm)   | σс    | σs    | σs'          |
| 頂版 | 端部    | 100.00 | 5. 706       | 4.026  | 2.85  | 93.6  | 0.0          |
|    | ハンチ始点 | 100.00 | 5. 706       | 3.520  | 1.31  | 33.4  | 0.0          |
|    | 中 央   | 100.00 | 7. 921       | 3.756  | 6.62  | 151.9 | 0.0          |
|    | 端部    | 100.00 | 5. 706       | 3. 927 | 2. 14 | 72. 9 | 0.0          |
| 底版 | ハンチ始点 | 100.00 | 5. 706       | 3.397  | 0.29  | 7.8   | 0.0          |
|    | 中 央   | 100.00 | 7. 921       | 3.716  | 5. 10 | 119.0 | 0.0          |
|    | 上端部   | 100.00 | 5. 706       | 5. 550 | 2.82  | 55. 4 | 0.0          |
|    | 上ハンチ点 | 100.00 | 5. 706       | 4.271  | 4.31  | 79. 2 | 0.0          |
| 側壁 | 中間    | 100.00 | 5. 706       | 4.660  | 3. 39 | 52.9  | 0.0          |
|    | 下ハンチ点 | 100.00 | 5. 706       | 4.650  | 3.40  | 53. 2 | 0.0          |
|    | 下端部   | 100.00 | 5. 706       | 5.939  | 2.00  | 34. 9 | 0.0          |

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$  CHECK OK

#### 6 せん断力に対する検討

### 6.1 せん断力照査点の断面力と最大値抽出

| 部材     | 断面力 | CASE-1  | CASE-2  | CASE-3  | CASE-4  | CASE-5 | CASE-6 | CASE-7 | CASE-8 |
|--------|-----|---------|---------|---------|---------|--------|--------|--------|--------|
| 101.13 | S   | 45. 120 | 2. 575  | 24. 056 | 19. 459 |        |        |        |        |
| 頂版     | M   | 1.835   |         |         |         |        |        |        |        |
| τ点     | N   | 4.003   |         |         |         |        |        |        |        |
|        | 最大  | 0       |         |         |         |        |        |        |        |
|        | S   | 31. 922 | 4. 246  | 25. 728 | 21. 130 |        |        |        |        |
| 底版     | M   | 2.462   |         |         |         |        |        |        |        |
| τ点     | N   | 0.464   |         |         |         |        |        |        |        |
|        | 最大  | 0       |         |         |         |        |        |        |        |
|        | S   | -3. 347 | -1. 599 | -5. 336 | -6. 261 |        |        |        |        |
| 側壁上    | M   |         |         |         | -1.940  |        |        |        |        |
| τ点     | N   |         |         |         | 30. 547 |        |        |        |        |
|        | 最大  |         |         |         | 0       |        |        |        |        |
|        | S   | -1.083  | 2.516   | 6. 253  | 7. 178  |        |        |        |        |
| 側壁下    | M   |         |         |         | -2.071  |        |        |        |        |
| τ点     | N   |         |         |         | 31.850  |        |        |        |        |
|        | 最大  |         |         |         | 0       |        |        |        |        |

ここに、S: せん断力(kN)、M: モーメント(kN・m)、N: 軸力(kN)を示す。

### 6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$\tau = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot \tau a$$
 ここに、 S : せん断力 (kN) d : 有効高さ (cm) b : 部材幅 (cm)

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

### ① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

| 有効高さ (m) | 0.3以下 | 1. 0 | 3. 0 | 5. 0 | 10.0以上 |
|----------|-------|------|------|------|--------|
| 補正係数(Ce) | 1. 4  | 1. 0 | 0.7  | 0.6  | 0.5    |

### ② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

| Г | コロビタサムケ いょ (0/) |      |     |     |     | 1 0 01 1 |
|---|-----------------|------|-----|-----|-----|----------|
|   | 引張鉄筋比(%)        | 0.1  | 0.2 | 0.3 | 0.5 | 1.0以上    |
| ſ | 補正係数(Cpt)       | 0. 7 | 0.9 | 1.0 | 1.2 | 1.5      |

## ③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M  $Mo = N/Ac \cdot Ic/y$   $ttll_1 \le Cn \le 2$ 

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m) N:断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

## 補正係数①、②を求める。

| 照査位置    | 部材厚   | かぶり   | 有効高      | Се    | 引張鉄筋  |        | 鉄筋比   | Cpt    |
|---------|-------|-------|----------|-------|-------|--------|-------|--------|
|         | T     | ď'    | d        |       | 径-本数  | As     | Pt    |        |
|         | (m)   | (m)   | (m)      |       |       | (cm2)  | (%)   |        |
| 頂版 τ 点  | 0.130 | 0.035 | 0.095000 | 1.400 | D13-4 | 7. 921 | 0.834 | 1.400  |
|         |       |       |          |       | D10-4 |        |       |        |
| 底版 τ 点  | 0.130 | 0.035 | 0.095000 | 1.400 | D13-4 | 7. 921 | 0.834 | 1.400  |
|         |       |       |          |       | D10-4 |        |       |        |
| 側壁上τ点   | 0.130 | 0.035 | 0.095000 | 1.400 | D10-8 | 5. 706 | 0.601 | 1. 261 |
| 側壁下 τ 点 | 0.130 | 0.035 | 0.095000 | 1.400 | D10-8 | 5. 706 | 0.601 | 1. 261 |

### 補正係数③を求める。

| 照査位置    | M        | N       | Ac       | Ic       | У       | Мо       | Cn     |
|---------|----------|---------|----------|----------|---------|----------|--------|
|         | (kN • m) | (kN)    | (m2)     | (m4)     | (m)     | (kN • m) |        |
| 頂版 τ 点  | 1.835    | 4.003   | 0.13000  | 0.000183 | 0.06500 | 0.087    | 1.047  |
| 底版 τ 点  | 2. 462   | 0.464   | 0. 13000 | 0.000183 | 0.06500 | 0.010    | 1.004  |
| 側壁上τ点   | -1.940   | 30. 548 | 0.13000  | 0.000183 | 0.06500 | 0.662    | 1. 341 |
| 側壁下 τ 点 | -2.071   | 31.850  | 0.13000  | 0.000183 | 0.06500 | 0.690    | 1. 333 |

## 補正した許容せん断応力度

| 照査位置    | τа     | 補正係数  |        |        | 補正     |
|---------|--------|-------|--------|--------|--------|
|         |        | Се    | Cpt    | Cn     | τа     |
| 頂版 τ 点  | 0. 260 | 1.400 | 1.400  | 1.047  | 0. 534 |
| 底版 τ 点  | 0. 260 | 1.400 | 1.400  | 1.004  | 0. 512 |
| 側壁上 τ 点 | 0. 260 | 1.400 | 1. 261 | 1.341  | 0.616  |
| 側壁下 τ 点 | 0. 260 | 1.400 | 1. 261 | 1. 333 | 0.612  |

## せん断応力度の照査

| 照査位置    | せん断力    | 応力度     | 補正      | 判定 |  |  |
|---------|---------|---------|---------|----|--|--|
|         | S       | τ       | τα      |    |  |  |
|         | (kN)    | (N/mm2) | (N/mm2) |    |  |  |
| 頂版 τ 点  | 45. 120 | 0.475   | 0. 534  | OK |  |  |
| 底版 τ 点  | 31. 922 | 0.336   | 0. 512  | OK |  |  |
| 側壁上 τ 点 | 6. 261  | 0.066   | 0.616   | OK |  |  |
| 側壁下 τ 点 | 7. 178  | 0.076   | 0.612   | OK |  |  |

以上