

○内空寸法 : 内 幅(B) 2000 mm

内 高(H) 1800 mm 長 さ(L) 1500 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $2000 \times (H) 1800 \times (L) 1500 [mm]$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) : $\gamma w = 9.0 [kN/m^3]$

1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) : $\alpha = 1.000$

(上 : T'荷重 横断通行 1.4 活荷重 載)

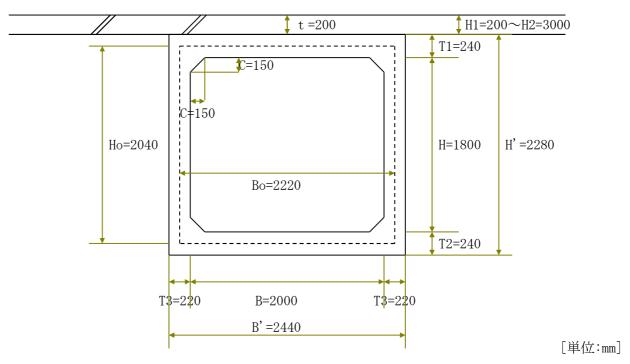
(輪接地幅 a = 0.20m b = 0.50m)

(側 載) : $Q = 10.0 [kN/m^2]$

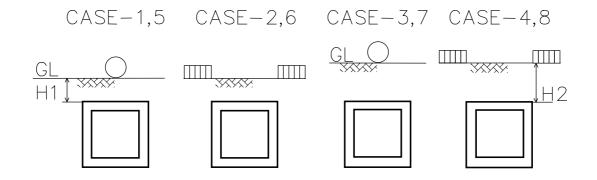
1.5 衝擊係数 i = 0.300

1.6 鉄筋かぶり : 頂 版 底 版 側 壁

> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm


1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$

1.8 許容応力度


鉄筋引張応力度 : σ sa = 160 [N/mm²] : $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度 コンクリート

設計基準強度 : $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 : $\sigma ca = 11.7 [N/mm^2]$ $\tau a = 0.260 [N/mm^2]$ せん断応力度

1.9 標準断面図

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

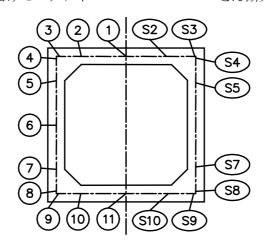
CASE 2, 4, 6, 8は、荷重がカルバート側載の場合

また

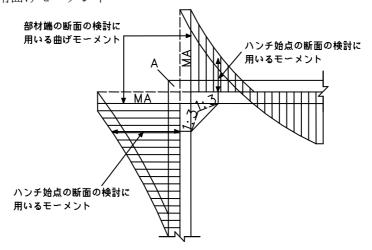
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

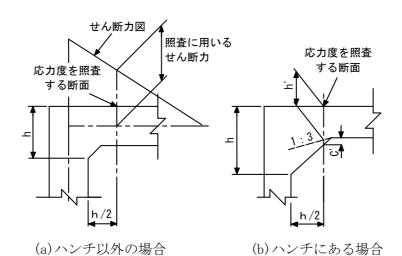
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 C0 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

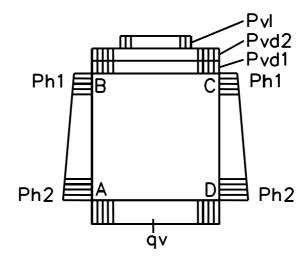
 $P vd1 = \gamma c \times T1 \qquad = 5.880 \text{ kN/m}^2$

- (2) 土圧
 - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 3.330 \text{ kN/m}^2$$


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 21.690 \text{ kN/m}^2$$

- (3) 活荷重
- ① 輪分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
- ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²
- (4) 底版反力

$$q v = P v d1 + P v d2 + \{P v 1 \times u + \gamma c \times (2 \times T 3 \times H_0 + 2 \times C^2)\} / B_0 = 59.112 \text{ kN/m}^2$$

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 1.193
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.193
 $\text{N1} = 2 + \alpha = 3.193, \quad \text{N2} = 2 + \beta = 3.193$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 24.277 kN·m

CBC =
$$\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$$
 = 27.301 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 4.975 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 3.702 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -9.269 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 10.294 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -13.219 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 13.219 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 15.020 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC$$
 = -15.020 kN·m

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x = 50.901 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 32.218 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = 47.585 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 23.197 kN \cdot m$$

- (3) 側壁
 - ① せん断力

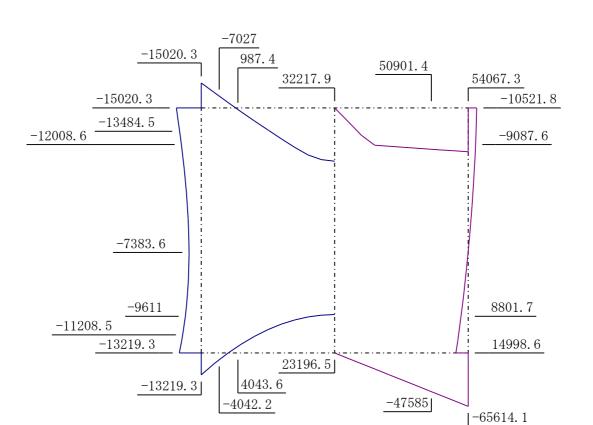
$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 8.802 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -9.088 kN


② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.837 m

$$\begin{array}{lll} \text{Mmax} &=& \text{S AB} \times \text{x} - \text{P hd2} \times \text{x}^{2} / 2 \\ &-& (\text{P hd1} - \text{P hd2}) \times \text{x}^{3} / (6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = \quad \text{-7.384 kN} \cdot \text{m}$$

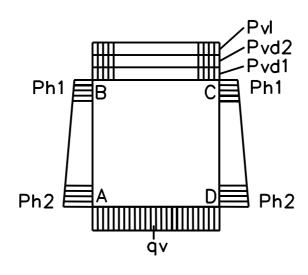
	[/単位長]							
部材 照査点	距離	曲げモーメント	せん断力	軸力				
	x (m)	M (N*m)	S (N)	N (N)				
3, S3 端 部	0. 110	-15020	54067	10522				
頂版 2 パチ始点	0. 260	-7027	*****	10522				
S2 τ 点	0.305	987	50901	10522				
1 中央	1. 110	32218	0	10522				
 9, S9 端 部	0. 110	 -13219	 65614	14999				
底版 10 パチ始点	0.260	-4042	*****	14999				
S10 τ 点	0.305	4044	47585	14999				
11 中 央	1. 110	23197	0	14999				
 4,S4 上 端部	1. 920	-15020	-10522	54067				
5 上ハンチ点	1.770	-13485	*****	54916				
S5 上 τ点	1.735	-12009	-9088	55794				
側壁6 中 間	0.837	-7384	0	60877				
S7 下 τ 点	0.305	-9611	8802	63888				
7 下ハンチ点	0.270	-11209	*****	64765				
8,S8 下 端部	0. 120	-13219	14999	65614				

曲げモーメント(N·m) せん断力(N)

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1$$
 = 5.880 kN/m²

- (2) 十圧
 - ① 鉛直土圧


$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 20.783 \text{ kN/m}^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.193 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.193 $\text{N1} = 2 + \alpha = 3.193, \quad \text{N2} = 2 + \beta = 3.193$
- ② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 8.535 kN·m

 $CBC = \{ (Pvd1 + Pvd2 + Pv1) \times Bo^{2} \} / 12$ = 4.263 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 6.709 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 5.436 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -0.507 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = -0.209 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -7.931 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 7.931 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 4.512 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -4.512 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 8.356 \text{ kN}$

② 曲げモーメント

 $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 1.883 \text{ kN} \cdot \text{m}$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -10.104 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 4.872 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 14.936 \text{ kN}$$

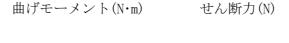
$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

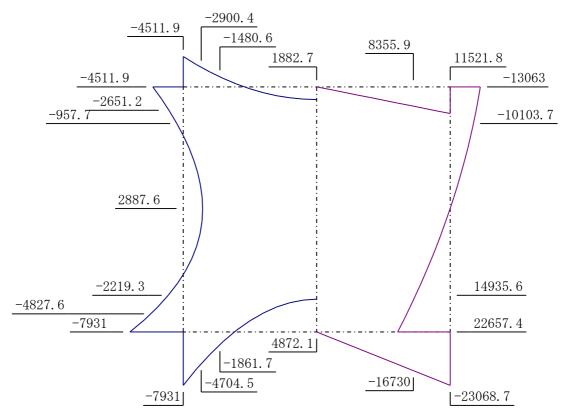
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = -10.104 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.027 m


$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB = 2.888 \text{ kN} \cdot \text{m}$$

RM408000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 110	-4512	11522	13063
	2 ///f始点	0. 260	-2900	*****	13063
	S2 τ 点	0. 305	-1481	8356	13063
	1 中 央	1. 110	1883	0	13063
底版	9, S9 端 部	0. 110	-7931	23069	22657
	10 ///f始点	0. 260	-4705	******	22657
	S10 τ 点	0. 305	-1862	16730	22657
	11 中 央	1. 110	4872	0	22657
側壁	4, S4 上 端部	1. 920	-4512	-13063	11522
	5 上/ンチ点	1. 770	-2651	******	12371
	S5 上 τ点	1. 735	-958	-10104	13248
	6 中 間	1. 027	2888	0	17256
	S7 下 τ点	0. 305	-2219	14936	21342
	7 下/ンチ点	0. 270	-4828	******	22220
	8, S8 下 端部	0. 120	-7931	22657	23069

2.3.1 設計荷重 (CASE - 3)

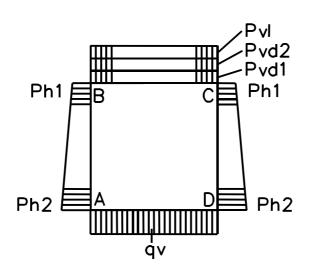
(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 5.880 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} = 28.530 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} = 46.890 \text{ kN/m}^{2}$$

(3) 活荷重

- ① 輪分布幅 $u = a + 2 \times H2$ = 6.200 m $v = b + 2 \times H2$ = 6.500 m = 117.000 kN $= 13.724 \text{ kN/m}^2$
- (4) 底版反力 $q v = P v d1 + P v d2 + P v 1 + \gamma c \times (2 \times T 3 \times Ho + 2 \times C^2) / Bo = 84.907 \text{ kN/m}^2$

[荷重図]

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 1.193
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.193
 $\text{N1} = 2 + \alpha = 3.193, \quad \text{N2} = 2 + \beta = 3.193$

② 荷 重 項

 $CAD = q v \times Bo^{2}/12 = 34.871 \text{ kN} \cdot \text{m}$ $CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^{2}\}/12 = 30.599 \text{ kN} \cdot \text{m}$ $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2)/60 = 13.715 \text{ kN} \cdot \text{m}$ $CBA = (Ho^{2}) \times (2 \times Phd2 + 3 \times Phd1)/60 = 12.441 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -9.321 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 8.606 \text{ kN} \cdot \text{m}$$

④ 端モーメント

MBA + MBC = 0

$$\begin{aligned} \mathsf{MAB} &= 2 \times \theta \, \mathsf{A} + \theta \, \mathsf{B} - \mathsf{CAB} \\ \mathsf{MAD} &= \beta \times \theta \, \mathsf{A} + \mathsf{CAD} \\ \mathsf{MBA} &= 2 \times \theta \, \mathsf{B} + \mathsf{CAD} \end{aligned} \qquad = 23.751 \, \, \mathsf{kN \cdot m} \\ \mathsf{MBA} &= 2 \times \theta \, \mathsf{B} + \theta \, \mathsf{A} + \mathsf{CBA} \\ \mathsf{MBC} &= \alpha \times \theta \, \mathsf{B} - \mathsf{CBC} \\ \mathsf{MAB} + \mathsf{MAD} &= 0 \end{aligned} \qquad = -20.332 \, \, \mathsf{kN \cdot m}$$

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 59.976 \text{ kN}$$

② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 25.567 kN·m

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 68.350 \text{ kN}$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 28.556 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

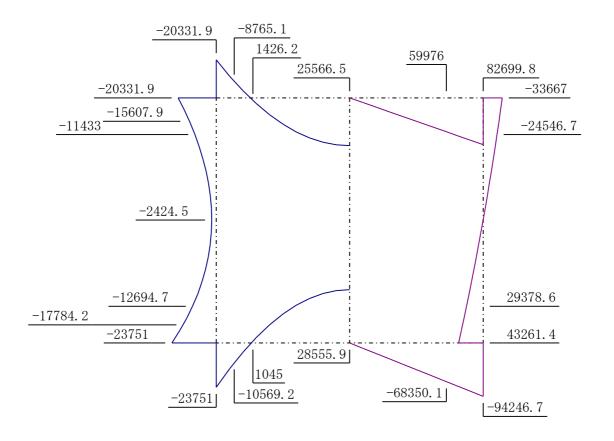
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 29.379 \text{ kN}$$

S XBA =
$$P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

 $- (MAB + MBA)/Ho$
 $- P hd2 \times x + (P hd2 - P hd1) \times x^2/(2 \times Ho)$ = -24.547 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.023 m

$$\begin{array}{lll} M_{\text{max}} &=& S \text{ AB} \times \text{ x} - P \text{ hd2} \times \text{ x}^2 / 2 \\ &-& (P \text{ hd1} - P \text{ hd2}) \times \text{ x}^3 / (6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = & -2.425 \text{ kN} \cdot \text{m} \end{array}$$

RM408000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 //νf始点 S2 τ 点 1 中 央	0. 110 0. 260 0. 305 1. 110	-20332 -8765 1426 25567	82700 ****** 59976 0	33667 33667 33667
底版	9, S9 端 部	0. 110	-23751	94247	43261
	10 ///チ始点	0. 260	-10569	******	43261
	S10 τ 点	0. 305	1045	68350	43261
	11 中 央	1. 110	28556	0	43261
側壁	4, S4 上 端部	1. 920	-20332	-33667	82700
	5 上ννf点	1. 770	-15608	******	83549
	S5 上 τ 点	1. 735	-11433	-24547	84426
	6 中 間	1. 023	-2425	0	88456
	S7 下 τ 点	0. 305	-12695	29379	92520
	7 下ννf点	0. 270	-17784	******	93398
	8, S8 下 端部	0. 120	-23751	43261	94247

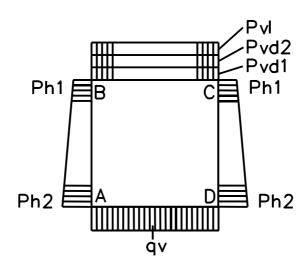
- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 5.880 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.530 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 51.890 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 71.183 kN/m^2$ [荷重図]

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.193 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.193 $\text{N1} = 2 + \alpha = 3.193, \quad \text{N2} = 2 + \beta = 3.193$

② 荷 重 項

 $CAD = q v \times B o^{2}/12$ = 29.235 kN·m

CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$ = 24.962 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 15.449 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 14.175 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -5.960 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 5.245 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -22.124 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 22.124 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 18.705 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -18.705 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 SXBC = (Pvd1+Pvd2+Pv1)×Bo/2-(Pvd1+Pvd2+Pv1)×x = 48.928 kN
 - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 18.738 kN·m

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 57.302 \text{ kN}$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 21.728 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 32.953 kN$$

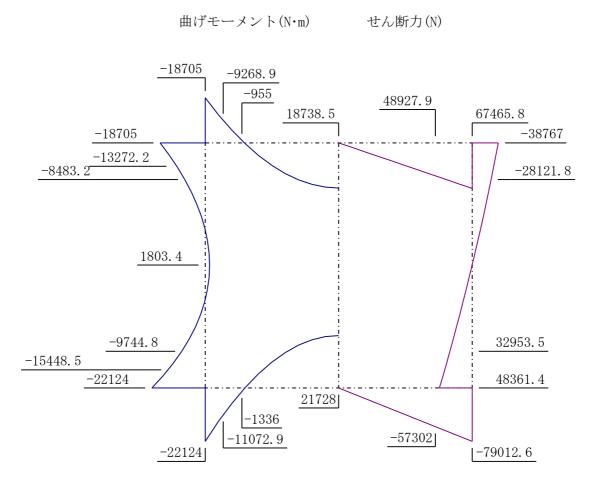
S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB+MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -28.122 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 1.023 m


$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$

$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= 1.803 \text{ kN} \cdot \text{m}$$

RM408000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 110	-18705	67466	38767
	2 //νf始点	0. 260	-9269	******	38767
	S2 τ 点	0. 305	-955	48928	38767
	1 中 央	1. 110	18739	0	38767
底版	9, S9 端 部	0. 110	-22124	79013	48361
	10 ///f始点	0. 260	-11073	******	48361
	S10 τ 点	0. 305	-1336	57302	48361
	11 中 央	1. 110	21728	0	48361
側壁	4, S4 上 端部	1. 920	-18705	-38767	67466
	5 上/ンチ点	1. 770	-13272	******	68315
	S5 上 τ点	1. 735	-8483	-28122	69192
	6 中 間	1. 023	1803	0	73222
	S7 下 τ点	0. 305	-9745	32954	77286
	7 下/ンチ点	0. 270	-15449	******	78164
	8, S8 下端部	0. 120	-22124	48361	79013

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

項版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	M $(kN \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-20. 332	33. 667	60. 39	11.00	24. 035	3
頂版	かが始点	-7. 027	10. 522	66. 79	8. 50	7. 921	1
	中 央	32. 218	10. 522	306. 20	8. 50	33. 112	1
	端部	-23. 751	43. 261	54. 90	11.00	28. 510	3
底版	ハンチ始点	-11. 073	48. 361	22. 90	8. 50	15. 184	4
	中 央	28. 556	43. 261	66.01	8.50	32. 233	3
	上端部	-20. 332	82. 700	24. 59	10.00	28.602	3
	上ハンチ点	-13. 485	54. 916	24. 55	7. 50	17. 603	1
側壁	中間	-7.384	60.877	12. 13	7. 50	11.949	1
	下ハンチ点	-17. 784	93. 398	19. 04	7. 50	24. 789	3
	下端部	-23. 751	94. 247	25. 20	10.00	33. 176	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$

 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$

$$d = c1 \times \sqrt{(Ms / b)}$$
 $h = d + d' < T$

 ここに、 M : 軸力を考慮した曲げモーメント
 (kN·m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

$$\sigma c^3 + [3 \times \sigma sa / (2 \times n) - 3 \times N \times (e + c) / (b \times da^2)] \times \sigma c^2$$
 $- 6 \times N \times (e + c) / (n \times b \times da^2) \times \sigma sa \times \sigma c$
 $- 3 \times N \times (e + c) / (N2 \times b \times da^2) \times \sigma sa^2 = 0$
上式を解いて σc を求める。また $da = T - d'$ とする。

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$

部材	点	Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
	端部	24. 035	9. 75	13. 25	29.00	4. 298
頂版	ハンチ始点	7. 921	5. 60	9. 10	24. 00	1. 908
	中央	33. 112	11.45	14. 95	24. 00	10. 698
	端部	28.510	10.62	14. 12	29.00	4. 942
底版	ハンチ始点	15. 184	7. 75	11. 25	24. 00	2. 003
	中央	32. 233	11. 30	14. 80	24. 00	8. 335
	上端部	28.602	10.64	14. 14	27.00	3. 215
	上ハンチ点	17. 603	8. 35	11.85	22. 00	3. 120
側壁	中間	11. 949	6.88	10.38	22.00	0.573
,	下心,	24. 789	9. 91	13. 41	22. 00	3. 542
	下端部	33. 176	11.46	14. 96	27.00	3.901
-				1 1'	T	CHECK OV

d+d' < T CHECK OK

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\begin{array}{l} \sigma\,c \,=\, N \,\,/\,\, \{b \,\,\times\,\, x \,\,/\,\, 2 \,-\,\, n \,\,\times\,\, As \,\,/\,\, x \,\,(\,c \,\,+\,\, T \,\,/\,\, 2 \,-\,\, x)\}\\ \sigma\,s \,=\, n \,\,\times\,\, \sigma\,c \,\,/\,\, x \,\,\times\,\, (\,c \,\,+\,\, T \,\,/\,\, 2 \,\,-\,\, x) \end{array}$$

 ここに、 N: 軸力
 (kN)

 b: 部材幅
 (cm)

 T: 部材厚
 (cm)

 c: 部材中心軸と鉄筋間距離
 (cm²/m)

 As: 主鉄筋断面積
 (cm²/m)

 x: 中心軸。次の3次元方程式より求める。 (cm)

 x³ - 3 × (T / 2 - e) × x²

 + 6 × n × As / b × (e + c) × x

 - 6 × n × As / b × (c + T / 2)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 13 - 14
 D 10 - 14
 D 13 - 7
 D 10 - 14
 D -0 - 0
 D 10 - 14

 D 0 - 0
 D 0 - 0
 D 10 - 7
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実 応	力	度(N/mm²)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σ s'
頂版	端部	100.00	6. 657	7. 323	2.85	106.0	0.0
	ハンチ始点	100.00	6.657	6. 159	1.39	48.7	0.0
	中 央	100.00	11.825	7. 102	5. 14	145.5	0.0
	端部	100.00	6. 657	7. 444	3. 33	121. 1	0.0
底版	ハンチ始点	100.00	6.657	7.715	2.20	54.6	0.0
	中 央	100.00	9. 241	7.028	5.05	145.3	0.0
	上端部	100.00	6. 657	8. 592	3. 23	84.0	0.0
	上ハンチ点	100.00	6.657	6.859	3. 17	80.6	0.0
側壁	中間	100.00	6.657	9.265	1.67	25.0	0.0
	下ハンチ点	100.00	6.657	7.457	4. 15	92.2	0.0
	下端部	100.00	6.657	8.513	3.77	99.6	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	50. 901	8.356	59. 976	48. 928				
頂版	M			1.426					
τ点	N			33. 667					
	最大			0					
	S	47. 585	16. 730	68.350	57. 302				
底版	M			1.045					
τ点	N			43. 261					
	最大			0					
	S	-9.088	-10. 104	-24. 547	-28. 122				
側壁上	M				-8. 483				
τ点	N				69. 192				
	最大				0				
	S	8.802	14. 936	29. 379	32. 953				
側壁下	M	_	_		-9. 745	_			
τ点	N				77. 286				
	最大				0				

ここに、S: せん断力(kN)、M:モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1. 2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $fttl, 1 \le Cn \le 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m)

N: 断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張鉄筋		鉄筋比	Cpt
	T	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0. 240	0.035	0. 205000	1.400	D13-9.3	11.825	0. 577	1. 246
底版 τ 点	0. 240	0.035	0. 205000	1.400	D13-4.7	9. 241	0.451	1. 151
					D10-4. 7			
側壁上 τ 点	0. 220	0.035	0. 185000	1.400	D10-9.3	6. 657	0.360	1.060
側壁下 τ 点	0. 220	0.035	0. 185000	1.400	D10-9.3	6. 657	0.360	1.060

補正係数③を求める。

照査位置	M	N	Ac	Ic	У	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	$(kN \cdot m)$	
頂版 τ 点	1. 426	33. 667	0. 24000	0.001152	0. 12000	1. 347	1.944
底版 τ 点	1.045	43. 261	0. 24000	0.001152	0. 12000	1.730	2.000
側壁上 τ 点	-8. 483	69. 192	0. 22000	0.000887	0.11000	2. 536	1. 299
側壁下 τ 点	-9. 745	77. 286	0. 22000	0.000887	0.11000	2.833	1. 291

補正した許容せん断応力度

照査位置	τа	補正係数			補正
		Се	Cpt	Cn	τа
頂版 τ 点	0. 260	1.400	1. 246	1.944	0.882
底版 τ 点	0. 260	1.400	1. 151	2.000	0.838
側壁上 τ 点	0. 260	1.400	1.060	1. 299	0. 501
側壁下 τ 点	0.260	1.400	1.060	1. 291	0.498

せん断応力度の照査

照査位置	査位置 せん断力		補正	判定			
	S	τ	τα				
	(kN)	(N/mm2)	(N/mm2)				
頂版 τ 点	59. 976	0. 293	0.882	OK			
底版 τ 点	68. 350	0.333	0.838	OK			
側壁上τ点	28. 122	0. 152	0. 501	OK			
側壁下τ点	32. 954	0. 178	0. 498	OK			

以上