

○内空寸法 : 内 幅(B) 360 mm

内 高(H) 360 mm 長 さ(L) 2000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.100 m H2= 2.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $360 \times (H) \quad 360 \times (L) \quad 2000 \text{ [mm]}$

土被り : $H1 = 0.100 \sim H2 = 2.000 [m]$

道路舗装厚 : t = 0.100 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材 (地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) : $\gamma w = 9.0 [kN/m^3]$

1.3 土圧係数 (水 平) : Ka = 0.500(鉛 直) $\alpha = 1.000$

(上 載) : T'荷重 横断通行 1.4 活荷重

(輪接地幅 a = 0.20m b = 0.50m)

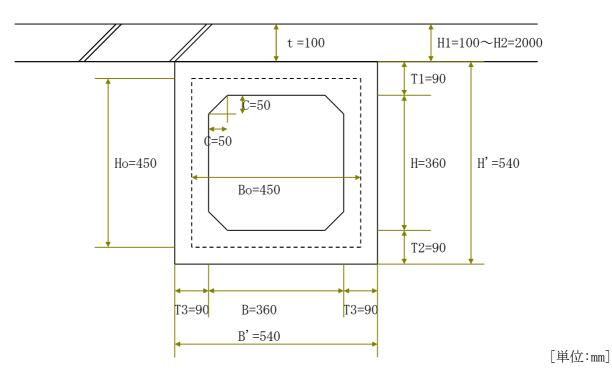
: $Q = 10.0 [kN/m^2]$ (側 載)

i = 0.3001.5 衝擊係数

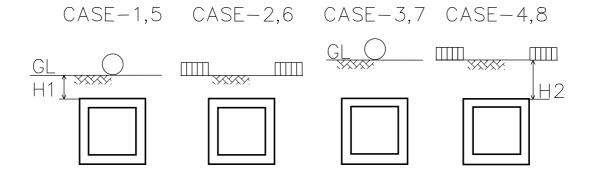
1.6 鉄筋かぶり : 頂 版 底 版 側 壁

> (内側) 20 mm 20 mm 70 mm (外側) 20 mm 20 mm 20 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$


1.8 許容応力度

鉄筋引張応力度 : σ sa = 160 [N/mm²] : $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度


コンクリート

設計基準強度 : $\sigma \, ck = 35.0 \, [N/mm^2]$ 曲げ圧縮応力度 : $\sigma ca = 11.7 [N/mm^2]$ せん断応力度 : $\tau a = 0.260 [N/mm^2]$

1.9 標準断面図

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

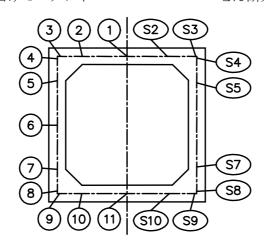
CASE 2, 4, 6, 8 は、荷重がカルバート側載の場合

また

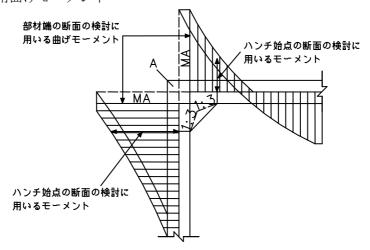
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

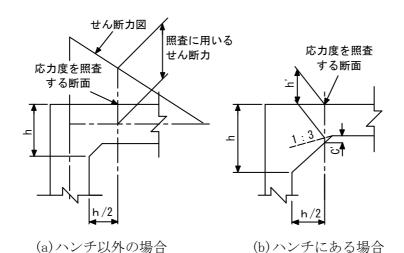
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 ${\cal C}$ の 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

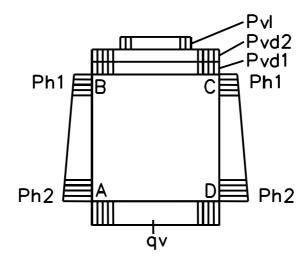
 $P vd1 = \gamma c \times T1 \qquad = 2.205 \text{ kN/m}^2$

- (2) 土圧
 - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 2.250 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 1.530 \text{ kN/m}^2$$


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 5.580 \text{ kN/m}^2$$

- (3) 活荷重
 - ① 輸分布幅 $u = a + 2 \times H1$ = 0.400 m $v = b + 2 \times H1$ = 0.700 m
 - ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 212.727 kN/m²
- (4) 底版反力

$$q v = P v d1 + P v d2 + \{P v 1 \times u + \gamma c \times (2 \times T 3 \times H_0 + 2 \times C^2)\} / B_0$$
 = 198.228 kN/m²

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 1.000
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.000
 $\text{N1} = 2 + \alpha = 3.000, \quad \text{N2} = 2 + \beta = 3.000$

② 荷 重 項

 $CAD = q v \times Bo^2 / 12$ = 3.345 kN·m

CBC = $\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \\ \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o}) = 3.601 \text{ kN} \cdot \text{m}$

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.067 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.053 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -1.673 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 1.740 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -1.672 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 1.672 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA$$
 = 1.861 kN·m

$$MBC = \alpha \times \theta B - CBC = -1.861 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$S XBC = \{ (Pvd1+Pvd2) \times Bo+Pv1 \times u \} / 2$$

$$- (Pvd1+Pvd2+Pv1) \times x + Pv1 = 23.890 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 3.570 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x \qquad = 21.805 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = q_{\text{V}} \times B_0^2 / 8 - M_{\text{AD}}$$
 = 3.345 kN·m

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

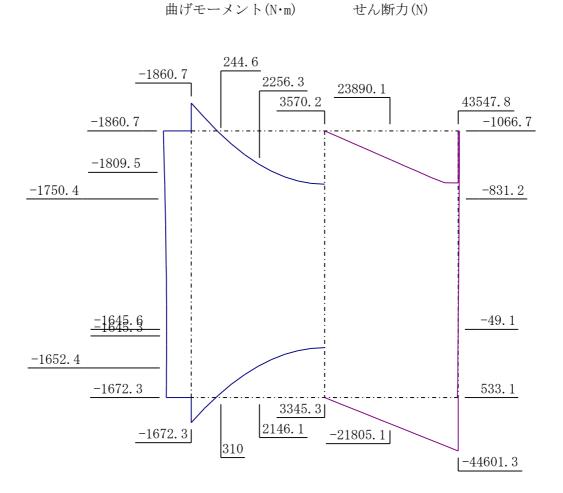
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -0.049 \text{ kN}$$

S XBA =
$$P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-P hd2 \times x + (P hd2 - P hd1) \times x^2/(2 \times Ho)$ = -0.831 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.104 m

$$M_{\text{max}} = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB$$

$$= -1.645 \text{ kN} \cdot \text{m}$$

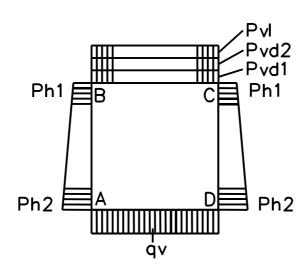
			[/単位	·	
部材	照査点	距離		せん断力	軸力
		x (m)	M (N*m)	S (N)	N (N)
3, S3	端部	0.045	-1861	43548	1067
頂版 2	ハンチ始点	0.095	245	*****	1067
S2	τ点	0.115	2256	23890	1067
1	中 央	0. 225	3570	0	1067
9, S9	 端 部	0.045	-1672	44601	533
底版 10	ハンチ始点	0.095	310	****	533
S10	τ点	0.115	2146	21805	533
11	中 央	0. 225	3345	0	533
4, S4	 上 端部	0.405	-1861	-1067	43548
5	上ハンチ点	0.355	-1810	*****	43665
S5	上 τ点	0.335	-1750	-831	43817
側壁 6	中間	0.104	-1645	0	44358
S7	下τ点	0.115	-1646	-49	44332
7	下ハンチ点	0.095	-1652	*****	44484
8, S8	下 端部	0.045	-1672	533	44601

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1$$
 = 2.205 kN/m²

- (2) 十圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 2.250 kN/m²


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2)\,\} & +P\,q \end{array} \\ = & 6.530\ k\,N/m^2 \\ P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2\!+\!Ho)\,\} & +P\,q \end{array} \\ = & 10.580\ k\,N/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 9.137 kN/m^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.000 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.000 $\text{N1} = 2 + \alpha = 3.000, \quad \text{N2} = 2 + \beta = 3.000$

② 荷 重 項

 $CAD = q v \times B o^2 / 12 \qquad = 0.154 \text{ kN} \cdot \text{m}$

CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$ = 0.075 kN·m

 $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.151 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.138 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = 0.007 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = -0.023 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -0.161 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 0.161 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 0.098 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -0.098 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 0.490 \text{ kN}$

② 曲げモーメント

 $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 0.015 \text{ kN} \cdot \text{m}$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x$$
 = -0.823 kN

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 0.070 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 1.059 \text{ kN}$$

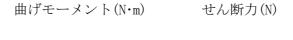
$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

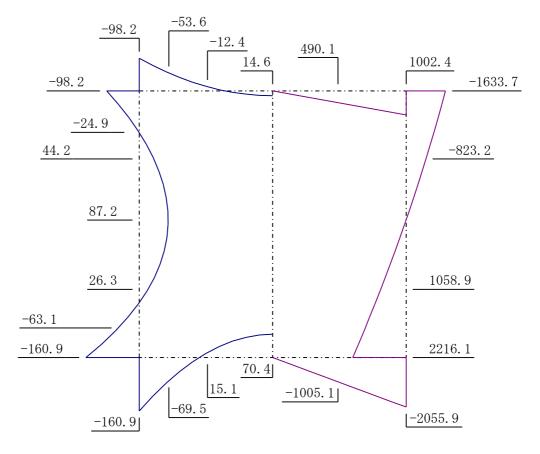
$$- (MAB + MBA) / Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2} / (2 \times Ho) = -0.823 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.232 m


$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB = 0.087 \text{ kN} \cdot \text{m}$$

RL474000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0.045	-98	1002	1634
頂版	2 ハンチ始点	0.095	-54	*****	1634
	S2 τ 点	0.115	-12	490	1634
	1 中 央	0. 225	15	0	1634
	 9,S9 端 部	0.045	-161	2056	2216
底版	10 ハンチ始点	0.095	-70	*****	2216
	S10 τ 点	0.115	15	1005	2216
	11 中 央	0. 225	70	0	2216
	 4,S4 上 端部	0.405	-98	-1634	1002
	5 上ハンチ点	0.355	-25	*****	1119
	S5 上 τ 点	0.335	44	-823	1272
側壁	6 中 間	0.232	87	0	1513
	S7 下 τ 点	0.115	26	1059	1787
	7 下ハンチ点	0.095	-63	*****	1939
	8,S8 下 端部	0.045	-161 	2216	2056

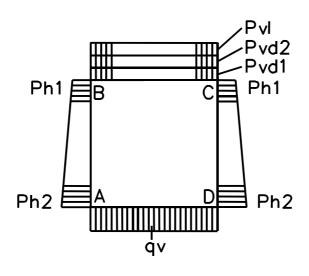
2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 2.205 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 36.450 kN/m²


② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \}$$
 = 18.630 kN/m²
$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \}$$

$$+ \gamma s \times (H2 - t - t b + T1/2 + Ho)$$
 = 22.680 kN/m²

- (3) 活荷重
 - ① 輸分布幅 $u = a + 2 \times H2$ = 4.200 m $v = b + 2 \times H2$ = 4.500 m
 - ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 20.260 kN/m²
- (4) 底版反力 q v = $P v d1 + P v d2 + P v 1 + \gamma c \times (2 \times T 3 \times Ho + 2 \times C^2) / Bo = 63.597 kN/m^2$

[荷重図]

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.000$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.000$ $\text{N1} = 2 + \alpha = 3.000, \quad \text{N2} = 2 + \beta = 3.000$
- ② 荷 重 項

$$CAD = q v \times B o^2 / 12$$
 = 1.073 kN·m

CBC =
$$\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\}/12$$
 = 0.994 kN·m

$$CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.355 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.342 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -0.351 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 0.334 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -0.723 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 0.723 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 0.660 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -0.660 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 6.481 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = (P_{\text{vd1}} + P_{\text{vd2}}) \times B_{\text{o}}^2 / 8 + P_{\text{v1}} \times B_{\text{o}}^2 / 8 + MBC = 0.832 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x$$
 = 6.996 kN

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 0.887 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 2.390 kN$$

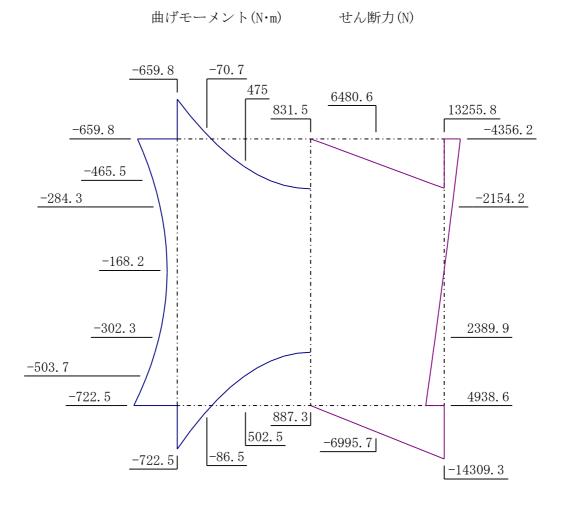
$$S XBA = P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- P hd2 \times x + (P hd2 - P hd1) \times x^{2}/(2 \times Ho) = -2.154 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.228 m

$$M_{\text{max}} = S AB \times x - P hd2 \times x^{2} / 2$$

$$- (P hd1 - P hd2) \times x^{3} / (6 \times Ho) + MAB = -0.168 \text{ kN} \cdot \text{m}$$

RL474000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0.045	-660	13256	4356
頂版	2 ハンチ始点	0.095	-71	*****	4356
	S2 τ 点	0.115	475	6481	4356
	1 中央	0. 225	832	0	4356
	 9, S9 端 部	0.045	-723	14309	4939
底版	10 パチ始点	0.095	-87	*****	4939
	S10 τ 点	0.115	502	6996	4939
	11 中 央	0. 225	887	0	4939
	 4,S4 上 端部	0.405	-660	-4356	13256
	5 上ハンチ点	0.355	-466	*****	13373
	S5 上 τ点	0.335	-284	-2154	13525
側壁	6 中 間	0.228	-168	0	13776
	S7 下 τ 点	0.115	-302	2390	14040
	7 下ハンチ点	0.095	-504	*****	14192
	8, S8 下 端部	0.045	-723 	4939	14309

2.4.1 設計荷重 (CASE - 4)

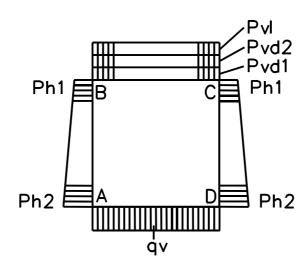
(1) 頂版自重

 $P vd1 = \gamma c \times T1$ = 2.205 kN/m²

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 36.450 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 23.630 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 27.680 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 43.337 kN/m^2$ [荷重図]

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 1.000
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.000
 $\text{N1} = 2 + \alpha = 3.000, \quad \text{N2} = 2 + \beta = 3.000$

② 荷 重 項

 $CAD = q v \times Bo^{2}/12 = 0.731 \text{ kN} \cdot \text{m}$ $CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^{2}\}/12 = 0.652 \text{ kN} \cdot \text{m}$ $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2)/60 = 0.440 \text{ kN} \cdot \text{m}$ $CBA = (Ho^{2}) \times (2 \times Phd2 + 3 \times Phd1)/60 = 0.426 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -0.138 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 0.121 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$\begin{aligned} \text{MAB} &= 2 \times \theta \, \text{A} + \theta \, \text{B} - \text{CAB} \\ \text{MAD} &= \beta \times \theta \, \text{A} + \text{CAD} \\ \text{MBA} &= 2 \times \theta \, \text{B} + \theta \, \text{A} + \text{CBA} \\ \text{MBC} &= \alpha \times \theta \, \text{B} - \text{CBC} \\ \text{MAB} + \text{MAD} &= 0 \\ \text{MBA} + \text{MBC} &= 0 \end{aligned}$$

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 $SXBC = (Pvd1+Pvd2+Pv1) \times Bo/2-(Pvd1+Pvd2+Pv1) \times x = 4.252 kN$
 - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC = 0.448 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x$$
 = 4.767 kN

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 0.503 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

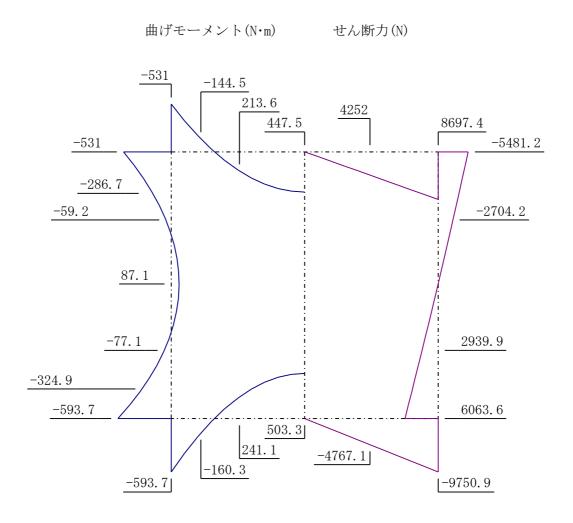
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 2.940 \text{ kN}$$

S XBA =
$$P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

 $- (MAB + MBA)/Ho$
 $- P hd2 \times x + (P hd2 - P hd1) \times x^2/(2 \times Ho)$ = -2.704 kN

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.227 m

$$\begin{aligned} \mathsf{M}\mathsf{m}\mathsf{a}\mathsf{x} &= \mathsf{S}\,\mathsf{A}\mathsf{B}\times\mathsf{x} - \mathsf{P}\,\mathsf{h}\mathsf{d}2\times\mathsf{x}^{\,2}/2 \\ &- (\mathsf{P}\,\mathsf{h}\mathsf{d}1 - \mathsf{P}\,\mathsf{h}\mathsf{d}2)\times\mathsf{x}^{\,3}/(6\times\mathsf{H}\mathsf{o}) + \mathsf{M}\mathsf{A}\mathsf{B} \end{aligned} \qquad = \quad 0.\,\,087\,\,\mathsf{k}\,\mathsf{N}\cdot\mathsf{m}$$

RL474000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0. 045	-531	8697	5481
頂版	2 ////////////////////////////////////	0.095	-145	*****	5481
	S2 τ 点	0. 115	214	4252	5481
	1 中央	0. 225 	448	0	5481
	9, S9 端 部	0.045	-594	9751	6064
底版	10 ハンチ始点	0.095	-160	*****	6064
	S10 τ 点	0.115	241	4767	6064
	11 中 央	0. 225	503	0	6064
	 4,S4 上 端部	0. 405	-531	-5481	8697
	5 上ハンチ点	0.355	-287	*****	8814
	S5 上 τ 点	0. 335	-59	-2704	8967
側壁	6 中間	0. 227	87	0	9219
	S7 下 τ 点	0. 115	-77	2940	9482
	7 下ハンチ点	0.095	-325	*****	9634
	8, S8 下 端部	0.045	-594	6064	9751

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN・m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN・m)

 $Ms = N \times (e + c) / 100 \qquad (kN \cdot m)$

但し、軸力は

頂版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	$M \ (k N \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-1.861	1. 067	174. 44	3. 33	1.896	1
頂版	ハンチ始点	0. 245	1. 067	22. 93	2. 50	0. 271	1
	中 央	3.570	1.067	334. 70	2. 50	3. 597	1
	端部	-1.672	0. 533	313. 69	3. 33	1.690	1
底版	ハンチ始点	0. 310	0. 533	58. 15	2.50	0. 323	1
	中 央	3.345	0. 533	627. 52	2.50	3. 359	1
	上端部	-0.531	8. 697	6. 11	3. 33	0.821	4
	上ハンチ点	-1.810	43. 665	4. 14	2. 50	2. 901	1
側壁	中間	0.087	1. 513	5. 76	-2.50	0.049	2
	下ハンチ点	-1. 652	44. 484	3. 71	2. 50	2. 765	1
	下端部	-0.594	9. 751	6.09	3. 33	0.919	4

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$d = c1 \times \sqrt{(Ms / b)} \qquad h = d + d' < T$$

 ここに、 M : 軸力を考慮した曲げモーメント
 (kN·m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$

部材			必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
	端部	1. 896	2.74	4. 74	10. 67	1. 399
頂版	ハンチ始点	0. 271	1.04	3. 04	9.00	0. 184
	中 央	3. 597	3.77	5. 77	9.00	3. 533
	端部	1. 690	2. 59	4. 59	10.67	1. 268
底版	ハンチ始点	0. 323	1. 13	3. 13	9.00	0. 266
	中 央	3. 359	3.65	5. 65	9.00	3. 316
	上端部	0.821	1.80	3.80	10.67	0.077
	上ハンチ点	2. 901	3. 39	5. 39	9. 00	0. 143
側壁	中間	0.049	0.44	7.44	9.00	0.068
	下ハンチ点	2. 765	3. 31	5. 31	9. 00	-0. 049
	下端部	0. 919	1. 91	3. 91	10.67	0.086
				d+d' <	T	CHECK OK

u i u vi

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\sigma c = N / \{b \times x / 2 - n \times As / x (c + T / 2 - x)\}$$

$$\sigma s = n \times \sigma c / x \times (c + T / 2 - x)$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 10 - 8
 D 6 - 16
 D 10 - 8
 D 6 - 16
 D 6 - 16
 D 6 - 16
 D 6 - 16

 D 6 - 8
 D 0 - 0
 D 6 - 8
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実 応	力	度 (N/mm^2)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σ s'
	端部	100.00	2. 534	2. 258	2. 12	90.4	0.0
頂版	ハンチ始点	100.00	4. 120	2.658	0.33	8.2	0.0
	中 央	100.00	4. 120	2.405	4.83	138.3	0.0
	端部	100.00	2. 534	2. 239	1.91	82. 1	0.0
底版	ハンチ始点	100.00	4. 120	2.491	0.42	11.4	0.0
	中 央	100.00	4. 120	2.397	4. 52	130.2	0.0
	上端部	100.00	2. 534	3. 993	0.56	9.8	0.0
	上ハンチ点	100.00	2.534	3.973	2.57	29.4	0.0
側壁	中間	100.00	2. 534	1.140	0.53	6. 1	0.0
	下ハンチ点	100.00	2.534	4. 347	2.29	21.0	0.0
	下端部	100.00	2. 534	4.000	0.63	11.0	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	23. 890	0.490	6. 481	4. 252				
頂版	M	2. 256							
τ点	N	1.067							
	最大	0							
	S	21.805	1.005	6. 996	4. 767				
底版	M	2. 146							
τ点	N	0. 533							
	最大	0							
	S	-0.831	-0.823	-2.154	-2.704				
側壁上	M				-0.059				
τ点	N				8. 967				
	最大				0				
	S	-0.049	1.059	2.390	2.940				
側壁下	M				-0.077				
τ点	N				9. 482				
	最大				0				

ここに、S:せん断力(kN)、M:モーメント(kN・m)、N:軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$\tau = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot \tau a$$
 ここに、 S : せん断力 (kN) d : 有効高さ (cm) b : 部材幅 (cm)

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
補正係数(Cpt)	0.7	0.9	1.0	1. 2	1. 5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $ttllow{t}llow{T}llow{$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m)

N: 断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張鉄筋		鉄筋比	Cpt
	T	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0.090	0.020	0.070000	1.400	D10-4	4. 120	0.589	1. 253
					D6-4			
底版 τ 点	0.090	0.020	0.070000	1.400	D10-4	4. 120	0.589	1. 253
					D6-4			
側壁上τ点	0.090	0.020	0.070000	1.400	D6-8	2. 534	0.362	1.062
側壁下 τ 点	0.090	0.020	0.070000	1.400	D6-8	2. 534	0.362	1.062

補正係数③を求める。

照査位置	M	N	Ac	Ic	У	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版τ点	2. 256	1.067	0.09000	0.000061	0.04500	0.016	1.007
底版 τ 点	2. 146	0. 533	0.09000	0.000061	0.04500	0.008	1.004
側壁上 τ 点	-0.059	8. 967	0.09000	0.000061	0.04500	0. 135	2.000
側壁下 τ 点	-0.077	9. 482	0.09000	0.000061	0.04500	0. 143	2.000

補正した許容せん断応力度

照査位置	τа	補正係数			補正
		Се	Cpt	Cn	τа
頂版 τ 点	0. 260	1.400	1. 253	1.007	0. 459
底版 τ 点	0. 260	1.400	1. 253	1.004	0. 458
側壁上 τ 点	0.260	1.400	1.062	2.000	0.773
側壁下 τ 点	0.260	1.400	1.062	2.000	0.773

せん断応力度の照査

照査位置	せん断力	応力度	補正	判定			
	S	τ	τа				
	(kN)	(N/mm2)	(N/mm2)				
頂版 τ 点	23. 890	0.341	0.459	OK			
底版 τ 点	21.805	0.311	0.458	OK			
側壁上 τ 点	2. 704	0. 039	0.773	OK			
側壁下 τ 点	2. 940	0.042	0.773	OK			

以上