

○内空寸法 : 内 幅(B) 2100 mm

内 高(H) 1100 mm 長 さ(L) 2000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $2100 \times (H) 1100 \times (L) 2000 \text{ [mm]}$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) $: \quad \gamma w = 9.0 \left[kN/m^3 \right]$

1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) $\alpha = 1.000$

(上 載) : T'荷重 横断通行 1.4 活荷重

(輪接地幅 a = 0.20m b = 0.50m)

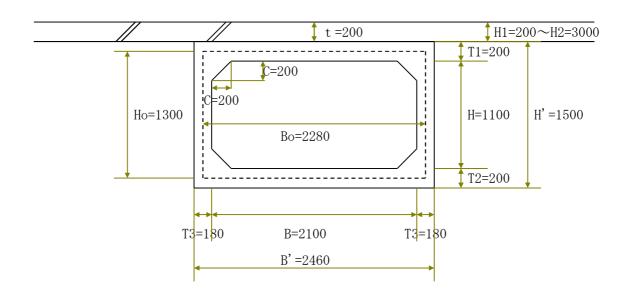
(側 載) : $Q = 10.0 [kN/m^2]$

i = 0.3001.5 衝擊係数

1.6 鉄筋かぶり : 頂 版 底 版 側 壁

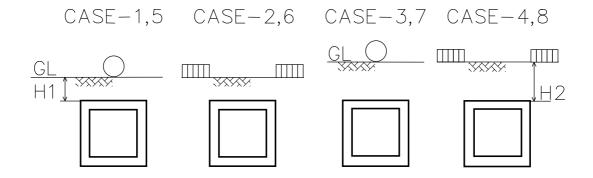
> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$


1.8 許容応力度

鉄筋引張応力度 : $\sigma \, \text{sa} = 160 \, [\, \text{N/mm}^2\,]$: $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度

コンクリート


設計基準強度 : $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 : $\sigma ca = 11.7 [N/mm^2]$ せん断応力度 $\tau a = 0.260 [N/mm^2]$

1.9 標準断面図

[単位:mm]

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

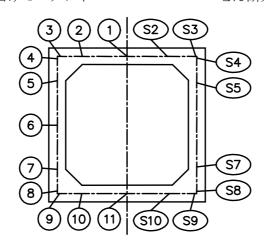
CASE 2, 4, 6, 8 は、荷重がカルバート側載の場合

また

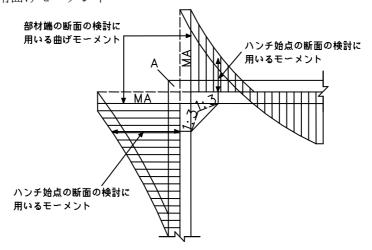
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

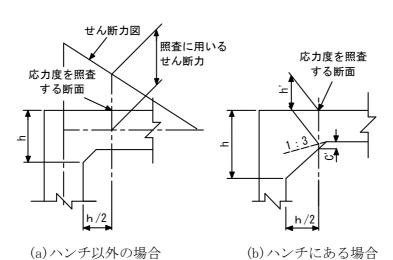
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 C0 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

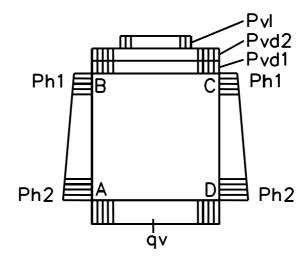
 $P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$

- (2) 土圧
 - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 3.150 \text{ kN/m}^2$$


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 14.850 \text{ kN/m}^2$$

- (3) 活荷重
 - ① 輸分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
 - ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²
- (4) 底版反力

$$q v = P vd1 + P vd2 + \{P v1 \times u + \gamma c \times (2 \times T3 \times Ho + 2 \times C^{2})\} / Bo = 52.609 \text{ kN/m}^{2}$$

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 0.782
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.782
 $\text{N1} = 2 + \alpha = 2.782$, $\text{N2} = 2 + \beta = 2.782$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 22.790 kN·m

CBC = $\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$ = 27.763 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 1.432 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 1.103 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -12.771 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 14.173 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -12.802 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 12.802 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 16.678 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -16.678 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\} / 2 - (Pvd1 + Pvd2) \times x = 50.535 \text{ kN}$$

② 曲げモーメント

$$\begin{aligned} \text{Mmax} &= (\text{Pvd1} + \text{Pvd2}) \times \text{Bo}^2/8 \\ &+ \text{Pvl} \times \text{u} \times (\text{Bo}/2 - \text{u}/4)/2 + \text{MBC} \end{aligned} = 31.550 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 44.718 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 21.384 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

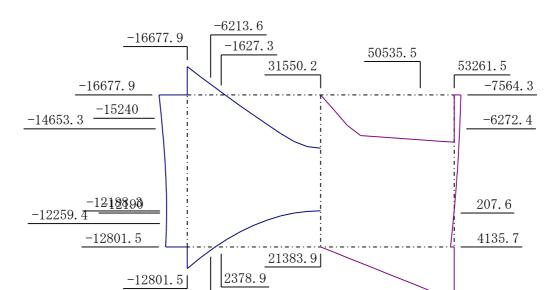
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 0.208 kN$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -6. 272 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho) = 0$$

上式を用いて x を求めると。 x = 0.307 m

$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB$$

$$= -12.188 \text{ kN} \cdot \text{m}$$

		[/単	位長]	
部材 照査点	距離	曲げモーメント	せん断力	軸力
	x (m)	M (N*m)	S (N)	N (N)
3, S3 端 部	0.090	-16678	53262	7564
頂版 2 パチ始点	0.290	-6214	*****	7564
S2 τ 点	0. 290	-1627	50536	7564
1 中 央	1. 140	31550	0	7564
 9, S9 端 部	0.090	-12802	 59975	4136
底版 10 パチ始点	0. 290	-1859	*****	4136
S10 τ 点	0.290	2379	44718	4136
11 中 央	1. 140	21384	0	4136
 4, S4 上 端部	1. 200	-16678	-7564	53262
5 上ハンチ点	1.000	-15240	*****	54294
S5 上 τ 点	1.010	-14653	-6272	54759
側壁6 中 間	0.307	-12188	0	58389
S7 下 τ 点	0. 290	-12190	208	58477
7 下ハンチ点	0.300	-12259	*****	58942
8, S8 下 端部	0. 100	-12802	4136	59975

-1858.8

-12<u>801.5</u>

曲げモーメント(N·m) せん断力(N)

-44717.8|

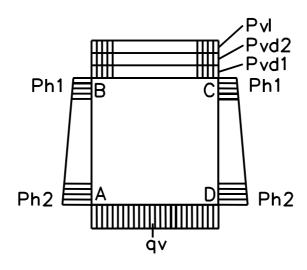
| -59974. 5

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2)\,\} & +P\,q \end{array} \\ = & 8.\,150\,\,k\,N/m^2 \\ P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2\!+\!Ho)\,\} & +P\,q \end{array} \\ = & 19.\,850\,\,k\,N/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 15.289 \text{ kN/m}^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.782 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.782 $\text{N1} = 2 + \alpha = 2.782, \quad \text{N2} = 2 + \beta = 2.782$
- ② 荷 重 項

$$CAD = q v \times B o^2 / 12 \qquad = 6.623 \text{ kN} \cdot \text{m}$$

CBC =
$$\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$$
 = 4.072 kN·m

$$CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 2.136 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 1.807 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -2.188 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 1.601 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -4.912 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 4.912 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 2.820 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -2.820 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 7.990 \text{ kN}$

② 曲げモーメント

 $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 3.288 \text{ kN} \cdot \text{m}$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -3.482 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^{2}/8 - MAD = 5.023 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 6.598 kN$$

$$SXBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

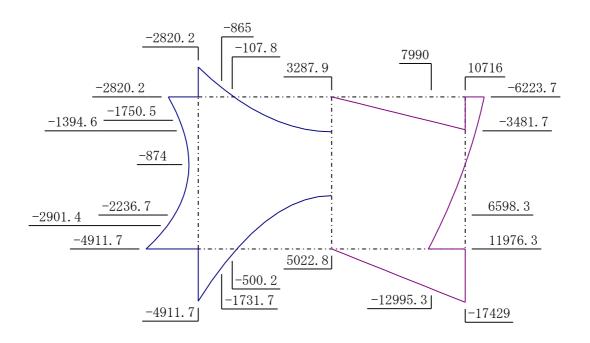
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

$$= -3.482 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.721 m

$$\begin{aligned} \mathsf{Mmax} &= \mathsf{S} \, \mathsf{AB} \times \mathsf{x} - \mathsf{P} \, \mathsf{hd2} \times \mathsf{x}^{\,2} / 2 \\ &- (\mathsf{P} \, \mathsf{hd1} - \mathsf{P} \, \mathsf{hd2}) \times \mathsf{x}^{\,3} / (6 \times \mathsf{Ho}) + \mathsf{MAB} \end{aligned} \qquad = -0.874 \, \mathsf{kN} \cdot \mathsf{m}$$

RL470000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 ///////////////////////////////////	0. 090 0. 290 0. 290 1. 140	-2820 -865 -108 3288	10716 ***** 7990 0	6224 6224 6224 6224
底版	9, S9 端 部 10 ////////////////////////////////////	0. 090 0. 290 0. 290 1. 140	-4912 -1732 -500 5023	17429 ****** 12995 0	11976 11976 11976 11976
側壁	4, S4 上 端部 5 上 λ λ f 点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下 λ λ f 点 8, S8 下 端部	1. 200 1. 000 1. 010 0. 721 0. 290 0. 300 0. 100	-2820 -1751 -1395 -874 -2237 -2901 -4912	-6224 ***** -3482 0 6598 ****** 11976	10716 11749 12214 13706 15932 16396 17429

2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

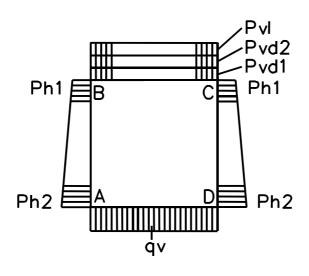
 $P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} = 28.350 \text{ kN/m}^{2}$$


$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} = 40.050 \text{ kN/m}^{2}$$

(3) 活荷重

① 輪分布幅
$$u = a + 2 \times H2$$
 $= 6.200 \text{ m}$ $v = b + 2 \times H2$ $= 6.500 \text{ m}$ $= 117.000 \text{ kN}$ $= 13.724 \text{ kN/m}^2$

(4) 底版反力 q v = $P v d1 + P v d2 + P v 1 + \gamma c \times (2 \times T 3 \times Ho + 2 \times C^2) / Bo = 79.413 \text{ kN/m}^2$

[荷重図]

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 0.782$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 0.782$ $\text{N1} = 2 + \alpha = 2.782, \quad \text{N2} = 2 + \beta = 2.782$
- ② 荷 重 項

 $CAD = q v \times Bo^{2}/12 = 34.402 \text{ kN} \cdot \text{m}$ $CBC = \{ (Pvd1 + Pvd2 + Pv1) \times Bo^{2} \}/12 = 31.851 \text{ kN} \cdot \text{m}$ $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2)/60 = 4.981 \text{ kN} \cdot \text{m}$ $CBA = (Ho^{2}) \times (2 \times Phd2 + 3 \times Phd1)/60 = 4.652 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -16.179 \text{ kN} \cdot \text{m}$ $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 15.592 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $\begin{aligned} \text{MAB} &= 2 \times \theta \, \text{A} + \theta \, \text{B} - \text{CAB} \\ \text{MAD} &= \beta \times \theta \, \text{A} + \text{CAD} \\ \text{MBA} &= 2 \times \theta \, \text{B} + \theta \, \text{A} + \text{CBA} \\ \text{MBC} &= \alpha \times \theta \, \text{B} - \text{CBC} \end{aligned} \qquad \begin{aligned} &= -21.748 \, \, \text{kN} \cdot \text{m} \\ &= 21.748 \, \, \text{kN} \cdot \text{m} \\ &= 19.656 \, \, \text{kN} \cdot \text{m} \\ &= -19.656 \, \, \text{kN} \cdot \text{m} \end{aligned}$

MAB+MAD = 0

MBA + MBC = 0

= 0.679 m

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 62.496 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = (P_{\text{vd1}} + P_{\text{vd2}}) \times B_{\text{o}}^2 / 8 + P_{\text{v1}} \times B_{\text{o}}^2 / 8 + MBC = 28.120 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 67.501 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = q_{\text{V}} \times B_{\text{O}}^2 / 8 - M_{\text{AD}}$$
 = 29.855 kN·m

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 13.870 \text{ kN}$$

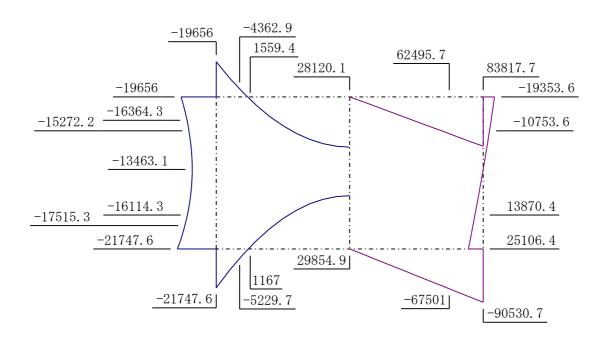
S XBA =
$$P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

 $- (MAB + MBA)/Ho$
 $- P hd2 \times x + (P hd2 - P hd1) \times x^2/(2 \times Ho)$ = -10.754 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

上式を用いて x を求めると。 x


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^{2} / (2 \times Ho) = 0$$

$$\begin{array}{lll} M_{\text{max}} &=& S \, AB \times \, \mathbf{x} - P \, hd2 \times \, \mathbf{x}^{\, 2} / 2 \\ &-& (P \, hd1 - P \, hd2) \times \, \mathbf{x}^{\, 3} / \left(6 \times \, Ho \right) + MAB \end{array} \qquad = & -13.463 \, \, k \, N \cdot m \end{array}$$

RL470000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 090	-19656	83818	19354
	2 //ν/ታ始点	0. 290	-4363	******	19354
	S2 τ 点	0. 290	1559	62496	19354
	1 中 央	1. 140	28120	0	19354
底版	9, S9 端 部	0. 090	-21748	90531	25106
	10 //γ始点	0. 290	-5230	*****	25106
	S10 τ 点	0. 290	1167	67501	25106
	11 中 央	1. 140	29855	0	25106
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ点 6 中 間 S7 下 τ点 7 下ννf点 8, S8 下 端部	1. 200 1. 000 1. 010 0. 679 0. 290 0. 300 0. 100	-19656 -16364 -15272 -13463 -16114 -17515 -21748	-19354 ****** -10754 0 13870 ****** 25106	83818 84851 85315 87025 89033 89498 90531

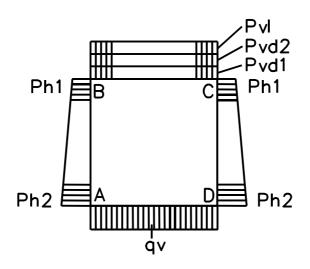
- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 4.900 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.350 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 45.050 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 65.689 \text{ kN/m}^2$ [荷重図]

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.782 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.782 $\text{N1} = 2 + \alpha = 2.782, \quad \text{N2} = 2 + \beta = 2.782$
- ② 荷 重 項

CAD = $q v \times Bo^{2}/12$ = 28.456 kN·m CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^{2}\}/12$ = 25.905 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 5.685 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 5.356 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -12.448 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1)$ = 11.860 kN·m

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -18.721 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 18.721 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 16.629 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -16.629 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 $SXBC = (Pvd1+Pvd2+Pv1) \times Bo/2-(Pvd1+Pvd2+Pv1) \times x = 50.830 kN$
 - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_{o^2}/8 + P_{v1} \times B_{o^2}/8 + MBC$$
 = 22.229 kN·m

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 55.835 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 23.964 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

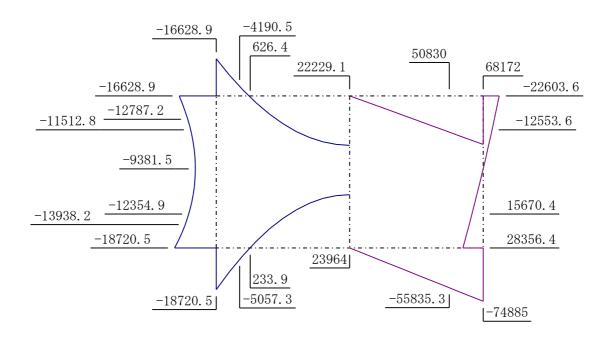
$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 15.670 \text{ kN}$$

S XBA =
$$P hd1 \times Ho/2 + (P hd2 - P hd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-P hd2 \times x + (P hd2 - P hd1) \times x^2/(2 \times Ho)$ = -12.554 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.675 m

$$\begin{array}{lll} \text{Mmax} &=& \text{S AB} \times \text{x} - \text{P hd2} \times \text{x}^2/2 \\ &-& (\text{P hd1} - \text{P hd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = & -9.382 \text{ kN} \cdot \text{m} \end{array}$$

RL470000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 090	-16629	68172	22604
	2 ///f始点	0. 290	-4191	******	22604
	S2 τ 点	0. 290	626	50830	22604
	1 中 央	1. 140	22229	0	22604
底版	9, S9 端 部	0. 090	-18721	74885	28356
	10 ///f始点	0. 290	-5057	******	28356
	S10 τ 点	0. 290	234	55835	28356
	11 中 央	1. 140	23964	0	28356
側壁	4, S4 上 端部 5 上 Λ ノ チ 点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下 Λ ノ チ 点 8, S8 下 端部	1. 200 1. 000 1. 010 0. 675 0. 290 0. 300 0. 100	-16629 -12787 -11513 -9382 -12355 -13938 -18721	-22604 ***** -12554 0 15670 ****** 28356	68172 69205 69670 71399 73388 73852 74885

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN・m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN・m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

頂版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	$M \ (k N \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-19. 656	19. 354	101. 56	9.83	21. 559	3
頂版	ハンチ始点	-6. 214	7. 564	82. 14	6. 50	6. 705	1
	中 央	31. 550	7. 564	417. 09	6. 50	32.042	1
	端部	-21. 748	25. 106	86. 62	9.83	24. 216	3
底版	ハンチ始点	-5. 230	25. 106	20.83	6. 50	6.862	3
	中 央	29.855	25. 106	118.91	6.50	31. 487	3
	上端部	-19.656	83. 818	23. 45	8.83	27.060	3
	上ハンチ点	-15. 240	54. 294	28. 07	5. 50	18. 226	1
側壁	中間	-12. 188	58. 389	20.87	5. 50	15. 400	1
	下ハンチ点	-17. 515	89. 498	19. 57	5. 50	22. 438	3
	下端部	-21.748	90. 531	24. 02	8.83	29.745	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$

 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$

$$d = c1 \times \sqrt{(Ms / b)}$$
 $h = d + d' < T$

 ここに、 M : 軸力を考慮した曲げモーメント
 (kN・m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

必要部材厚 必要鉄筋量 部材 点 Ms必要有効高 部材厚 $(k N \cdot m/m)$ d (cm) d+d (cm) T (cm) $As(cm^2/m)$ 端部 21.559 9.24 12.74 26, 67 5. 132 頂版 ハンチ始点 6.705 5. 15 8.65 20.00 2.248 中央 32.042 11.26 14.76 20.00 13.492 端部 24. 216 9.79 13.29 26, 67 5, 588 底版 心チ始点 8.71 20.00 6.862 5.21 1.217 中央 11.16 31, 487 14.66 20.00 12.139 上端部 27.060 10.35 13.85 24.67 3.630 上ハンチ点 18. 226 8.49 11.99 18.00 5.489 中間 側壁 15.400 7.81 11.31 18.00 3.789 下ハンチ点 22.438 9.42 12.92 18.00 5.470 下端部 29.745 10.85 14. 35 24.67

CHECK OK

d + d' < T

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\sigma c = N / \{b \times x / 2 - n \times As / x (c + T / 2 - x)\}$$

$$\sigma s = n \times \sigma c / x \times (c + T / 2 - x)$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 16 - 16
 D 10 - 16
 D 16 - 8
 D 10 - 16
 D -0 - 0
 D 10 - 16

 D 0 - 0
 D 0 - 0
 D 13 - 8
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実 応	力	度 (N/mm^2)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σ s'
	端部	100.00	5. 706	6.020	3. 39	144.6	0.0
頂版	ハンチ始点	100.00	5. 706	4.887	1.85	65.8	0.0
	中 央	100.00	15.888	6.886	6.55	137. 2	0.0
	端部	100.00	5. 706	6. 114	3.75	156. 9	0.0
底版	ハンチ始点	100.00	5. 706	6. 137	1.55	39. 2	0.0
	中 央	100.00	13.012	6.603	6.67	149.9	0.0
	上端部	100.00	5. 706	7. 462	3.88	107.0	0.0
	上ハンチ点	100.00	5. 706	5. 100	5. 58	154. 4	0.0
側壁	中間	100.00	5. 706	5.460	4.45	110.5	0.0
	下ハンチ点	100.00	5. 706	5.558	6.38	154. 1	0.0
	下端部	100.00	5. 706	7. 397	4.30	120. 1	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	50. 535	7. 990	62. 496	50.830				
頂版	M			1.559					
τ点	N			19. 354					
	最大			0					
	S	44. 718	12.995	67. 501	55. 835				
底版	M			1. 167					
τ点	N			25. 106					
	最大			0					
	S	-6. 272	-3.482	-10.754	-12. 554				
側壁上	M				-11. 513				
τ点	N				69.669				
	最大				0				
	S	0. 208	6. 598	13.870	15. 670				
側壁下	M				-12.355				
τ点	N				73. 388				
	最大				0				

ここに、S: せん断力(kN)、M: モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1.2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn)を τ a に乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $fttl, 1 \le Cn \le 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m)N: 断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張鉄筋		鉄筋比	Cpt
	T	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0. 200	0.035	0. 165000	1.400	D16-8	15. 888	0.963	1.478
底版 τ 点	0. 200	0.035	0. 165000	1.400	D16-4	13. 012	0. 789	1. 373
					D13-4			
側壁上τ点	0. 183	0.035	0. 148333	1.400	D10-8	5. 706	0.385	1.085
側壁下 τ 点	0. 183	0.035	0. 148333	1.400	D10-8	5. 706	0.385	1.085

補正係数③を求める。

照査位置	M	N	Ac	Ic	У	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	$(kN \cdot m)$	
頂版 τ 点	1. 559	19. 354	0. 20000	0.000667	0.10000	0.645	1.414
底版 τ 点	1. 167	25. 106	0.20000	0.000667	0.10000	0.837	1.717
側壁上 τ 点	-11. 513	69. 670	0. 18300	0.000511	0.09150	2. 126	1. 185
側壁下 τ 点	-12. 355	73. 388	0.18300	0.000511	0.09150	2. 240	1. 181

補正した許容せん断応力度

照査位置	τа		補正		
		Се	Cpt	Cn	τа
頂版τ点	0.260	1.400	1.478	1.414	0. 761
底版 τ 点	0.260	1.400	1. 373	1.717	0.858
側壁上 τ 点	0.260	1.400	1.085	1. 185	0.468
側壁下τ点	0. 260	1.400	1.085	1. 181	0. 467

せん断応力度の照査

照査位置	せん断力	応力度	補正	判定
	S	τ	τα	
	(kN)	(N/mm2)	(N/mm2)	
頂版 τ 点	62. 496	0.379	0.761	OK
底版 τ 点	67. 501	0.409	0.858	OK
側壁上 τ 点	12. 554	0.085	0.468	OK
側壁下 τ 点	15. 670	0. 106	0.467	OK

以 上