

○内空寸法 : 内 幅(B) 1300 mm

内 高(H) 700 mm 長 さ(L) 2000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $1300 \times (H) 700 \times (L) 2000 \text{ [mm]}$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) : $\gamma w = 9.0 [kN/m^3]$

1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) : $\alpha = 1.000$

(上 : T'荷重 横断通行 1.4 活荷重 載)

(輪接地幅 a = 0.20m b = 0.50m)

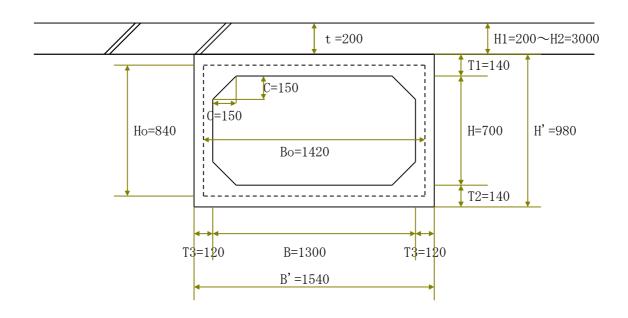
(側 載) : $Q = 10.0 [kN/m^2]$

1.5 衝擊係数 i = 0.300

1.6 鉄筋かぶり : 頂 版 底 版 側 壁

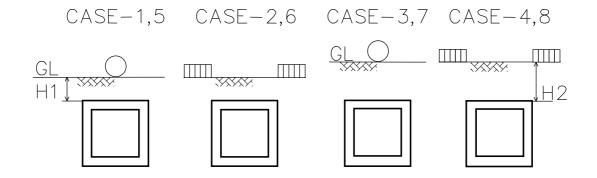
> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$


1.8 許容応力度

鉄筋引張応力度 : σ sa = 160 [N/mm²] : $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度

コンクリート


設計基準強度 : $\sigma \, ck = 40.0 \, [N/mm^2]$ 曲げ圧縮応力度 : $\sigma ca = 14.0 [N/mm^2]$ せん断応力度 $\tau a = 0.270 [N/mm^2]$

1.9 標準断面図

[単位:mm]

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

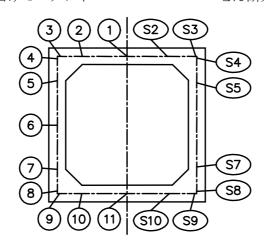
CASE 2, 4, 6, 8は、荷重がカルバート側載の場合

また

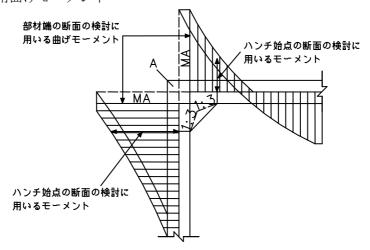
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

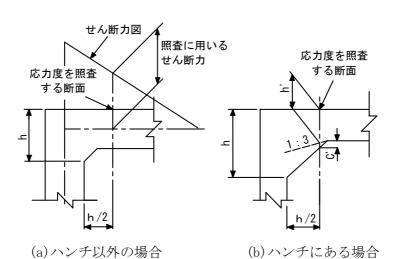
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 C'の 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

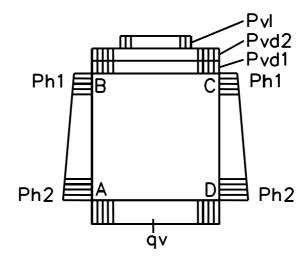
 $P vd1 = \gamma c \times T1 \qquad = 3.430 \text{ kN/m}^2$

- (2) 土圧
 - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\}$$
 = 2.880 kN/m²


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 10.440 \text{ kN/m}^2$$

- (3) 活荷重
 - ① 輸分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
 - ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²
- (4) 底版反力

$$\begin{array}{lll} q\,v &= P\,vd1 + P\,vd2 + \{\,P\,v1 \times u + \gamma\,\,c \\ &\times (2 \times T\,3 \times H\,o + 2 \times C^{\,2})\,\} \,/\,B\,o \end{array} \qquad \qquad = \quad 72.\,108\,\,kN/m^2 \end{array}$$

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 0.939
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.939
 $\text{N1} = 2 + \alpha = 2.939$, $\text{N2} = 2 + \beta = 2.939$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 12.117 kN·m

CBC =
$$\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$$
 = 15.537 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.436 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.347 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -6.482 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 7.373 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -6.027 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 6.027 kN \cdot m$$

$$MBA = 2 \times \theta B + \theta A + CBA = 8.611 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -8.611 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\} / 2 - (Pvd1 + Pvd2) \times x = 46.550 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 17.213 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 36.414 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 12.147 kN \cdot m$$

- (3) 側壁
 - ① せん断力

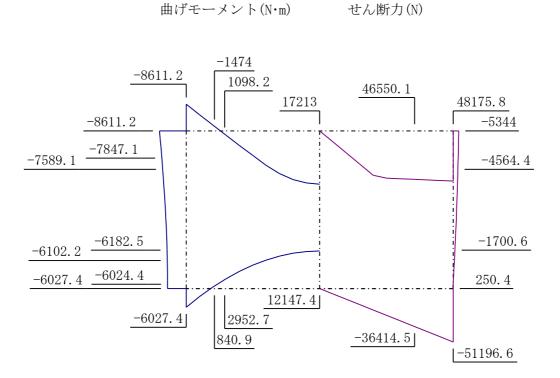
$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -1.701 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -4.564 kN


② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.024 m

$$\begin{aligned} \mathsf{M}\mathsf{m}\mathsf{a}\mathsf{x} &= \mathsf{S}\mathsf{A}\mathsf{B}\times\mathsf{x} - \mathsf{P}\mathsf{h}\mathsf{d}2\times\mathsf{x}^2/2 \\ &- (\mathsf{P}\mathsf{h}\mathsf{d}1 - \mathsf{P}\mathsf{h}\mathsf{d}2)\times\mathsf{x}^3/(6\times\mathsf{H}\mathsf{o}) + \mathsf{M}\mathsf{A}\mathsf{B} \end{aligned} = -6.024 \ \mathsf{k}\mathsf{N}\cdot\mathsf{m}$$

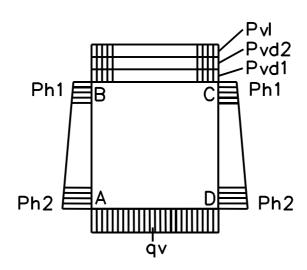
-t		1) Ja//.	[/単位		.
部材 照3			曲げモーメント		軸力
		x (m)	M(N*m)	S (N)	N (N)
3, S3 端	 	0.060	-8611	48176	5344
頂版 2 パ	ンチ始点	0. 210	-1474	****	5344
S2 τ	点	0. 205	1098	46550	5344
1 🕴	中央	0.710	17213	0	5344
9, S9 端	 H 部	0.060	-6027	51197	250
底版 10 パ	ンチ始点	0. 210	841	****	250
S10 τ	点	0. 205	2953	36415	250
11 👎	9 央	0.710	12147	0	250
4, S4 上	 : 端部	0. 770	-8611	-5344	48176
5 <u> </u>	ニハンチ点	0.620	-7847	****	48715
S5 <u> </u>	二 τ点	0.635	-7589	-4564	48913
側壁 6 中	□ 間	0.024	-6024	0	51110
S7 T	τ点	0. 205	-6183	-1701	50459
7 T	「ハンチ点	0. 220	-6102	*****	50657
8,88 下	端部	0. 070	-6027	250	51197

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 3.430 \text{ kN/m}^2$$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2)\,\} & +P\,q \end{array} \\ = & 7.\,880\,\,k\,N/m^2 \\ P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2\!+\!Ho)\,\} & +P\,q \end{array} \\ = & 15.\,440\,\,k\,N/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 12.185 \text{ kN/m}^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.939 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.939 $\text{N1} = 2 + \alpha = 2.939$, $\text{N2} = 2 + \beta = 2.939$
- ② 荷 重 項

 $CAD = q v \times B o^2 / 12 \qquad = 2.047 \text{ kN} \cdot \text{m}$

CBC = $\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$ = 1.333 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.730 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.641 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -0.597 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 0.438 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -1.486 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 1.486 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 0.921 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -0.921 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 4.005 \text{ kN}$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 1.078 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x$$
 = -1.890 kN

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 1.585 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 3.124 \text{ kN}$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

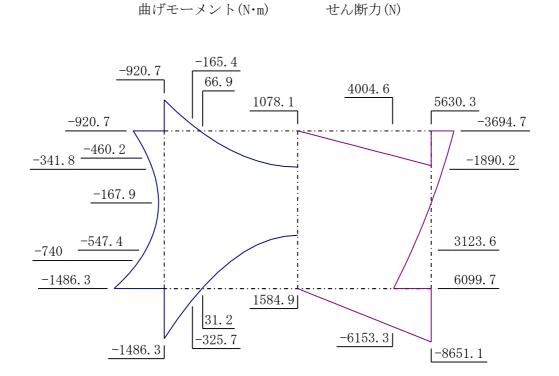
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -1.890 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.456 m


$$M_{\text{max}} = S_{\text{AB}} \times x - P_{\text{hd2}} \times x^{2}/2$$

$$- (P_{\text{hd1}} - P_{\text{hd2}}) \times x^{3}/(6 \times H_{\text{o}}) + M_{\text{AB}}$$

$$= -0.168 \text{ kN} \cdot \text{m}$$

RL435000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 060	-921	5630	3695
	2 ////5始点	0. 210	-165	******	3695
	S2 τ 点	0. 205	67	4005	3695
	1 中 央	0. 710	1078	0	3695
底版	9, S9 端 部	0. 060	-1486	8651	6100
	10 ///チ始点	0. 210	-326	******	6100
	S10 τ 点	0. 205	31	6153	6100
	11 中 央	0. 710	1585	0	6100
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下ννf点 8, S8 下 端部	0. 770 0. 620 0. 635 0. 456 0. 205 0. 220 0. 070	-921 -460 -342 -168 -547 -740 -1486	-3695 ****** -1890 0 3124 ******	5630 6170 6368 7011 7914 8112 8651

2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

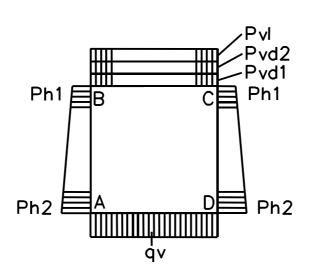
 $P vd1 = \gamma c \times T1 \qquad = 3.430 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} = 28.080 \text{ kN/m}^{2}$$


$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} = 35.640 \text{ kN/m}^{2}$$

(3) 活荷重

① 輪分布幅
$$u = a + 2 \times H2$$
 $= 6.200 \text{ m}$ $v = b + 2 \times H2$ $= 6.500 \text{ m}$ $= 117.000 \text{ kN}$ $= 13.724 \text{ kN/m}^2$

(4) 底版反力 q v = $P v d1 + P v d2 + P v 1 + \gamma c \times (2 \times T 3 \times Ho + 2 \times C^2) / Bo = 76.309 kN/m^2$

[荷重図]

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.939 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.939 $\text{N1} = 2 + \alpha = 2.939$, $\text{N2} = 2 + \beta = 2.939$
- ② 荷 重 項

$$CAD = q v \times B o^2 / 12$$
 = 12.822 kN·m

CBC =
$$\{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$$
 = 12.108 kN·m

$$CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 1.918 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 1.829 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -5.541 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 5.382 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -7.618 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 7.618 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 7.052 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -7.052 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 36.387 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = (P_{\text{vd1}} + P_{\text{vd2}}) \times B_{\text{o}}^2 / 8 + P_{\text{v1}} \times B_{\text{o}}^2 / 8 + MBC = 11.109 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 38.536 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = q_{\text{V}} \times B_{\text{O}}^2 / 8 - M_{\text{AD}}$$
 = 11.616 kN·m

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

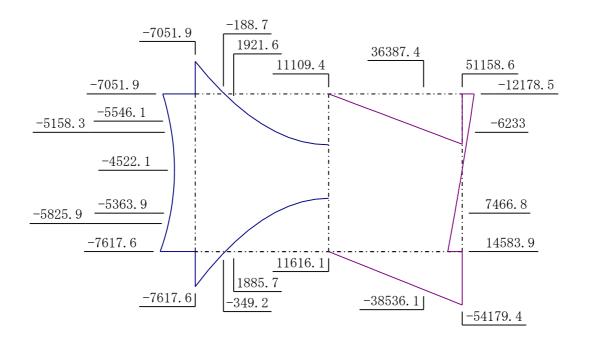
$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 7.467 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $- (MAB + MBA) / Ho$
 $- Phd2 \times x + (Phd2 - Phd1) \times x^2 / (2 \times Ho)$ = -6.233 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.433 m

$$\begin{array}{lll} M_{\text{max}} &=& S \text{ AB} \times \text{ x} - P \text{ hd2} \times \text{ x}^2 / 2 \\ &-& (P \text{ hd1} - P \text{ hd2}) \times \text{ x}^3 / (6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = & -4.522 \text{ kN} \cdot \text{m} \end{array}$$

RL435000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 060	-7052	51159	12179
	2 ///f始点	0. 210	-189	******	12179
	S2 τ 点	0. 205	1922	36387	12179
	1 中 央	0. 710	11109	0	12179
底版	9, S9 端 部	0. 060	-7618	54179	14584
	10 ///f始点	0. 210	-349	******	14584
	S10 τ 点	0. 205	1886	38536	14584
	11 中 央	0. 710	11616	0	14584
側壁	4, S4 上 端部 5 上/ンチ点 S5 上 τ点 6 中 間 S7 下 τ点 7 下/ンチ点 8, S8 下 端部	0. 770 0. 620 0. 635 0. 433 0. 205 0. 220 0. 070	-7052 -5546 -5158 -4522 -5364 -5826 -7618	-12179 ****** -6233 0 7467 ****** 14584	51159 51698 51896 52622 53442 53640 54179

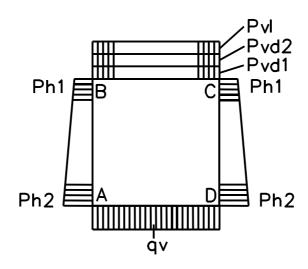
- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 3.430 \text{ kN/m}^2$$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.080 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 40.640 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 62.585 \text{ kN/m}^2$ [荷重図]

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 0.939
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.939
 $\text{N1} = 2 + \alpha = 2.939$, $\text{N2} = 2 + \beta = 2.939$

② 荷 重 項

 $CAD = q v \times Bo^{2}/12 = 10.516 \text{ kN} \cdot \text{m}$ $CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^{2}\}/12 = 9.801 \text{ kN} \cdot \text{m}$ $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2)/60 = 2.212 \text{ kN} \cdot \text{m}$ $CBA = (Ho^{2}) \times (2 \times Phd2 + 3 \times Phd1)/60 = 2.123 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -4.200 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 4.041 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$\begin{aligned} \text{MAB} &= 2 \times \theta \, \text{A} + \theta \, \text{B} - \text{CAB} \\ \text{MAD} &= \beta \times \theta \, \text{A} + \text{CAD} \\ \text{MBA} &= 2 \times \theta \, \text{B} + \theta \, \text{A} + \text{CBA} \\ \text{MBC} &= \alpha \times \theta \, \text{B} - \text{CBC} \\ \text{MAB} + \text{MAD} &= 0 \\ \text{MBA} + \text{MBC} &= 0 \end{aligned}$$

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 $SXBC = (Pvd1+Pvd2+Pv1) \times Bo/2-(Pvd1+Pvd2+Pv1) \times x = 29.457 kN$
 - ② 曲げモーメント

$$M_{\text{max}} = (P_{\text{vd1}} + P_{\text{vd2}}) \times B_{\text{o}}^2 / 8 + P_{\text{v1}} \times B_{\text{o}}^2 / 8 + MBC = 8.697 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = q v \times B o / 2 - q v \times x = 31.605 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 9.204 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 8.542 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

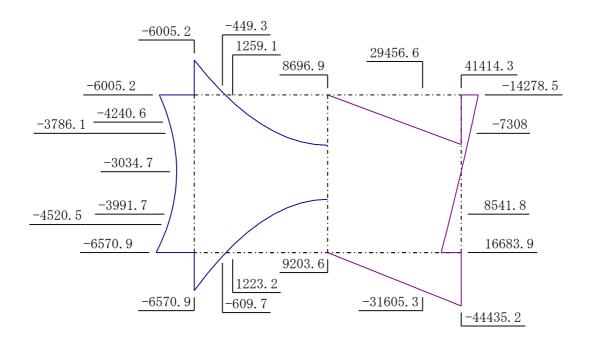
 $- (MAB + MBA) / Ho$
 $- Phd2 \times x + (Phd2 - Phd1) \times x^2 / (2 \times Ho)$ = -7.308 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.431 m

$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$


$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= -3.035 \text{ kN} \cdot \text{m}$$

RL435000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 060	-6005	41414	14279
	2 ///f始点	0. 210	-449	******	14279
	S2 τ 点	0. 205	1259	29457	14279
	1 中 央	0. 710	8697	0	14279
底版	9, S9 端 部	0. 060	-6571	44435	16684
	10 ///f始点	0. 210	-610	******	16684
	S10 τ 点	0. 205	1223	31605	16684
	11 中 央	0. 710	9204	0	16684
側壁	4, S4 上 端部 5 上 λ λ f 点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下 λ λ f 点 8, S8 下 端部	0. 770 0. 620 0. 635 0. 431 0. 205 0. 220 0. 070	-6005 -4241 -3786 -3035 -3992 -4521 -6571	-14279 ****** -7308 0 8542 ****** 16684	41414 41954 42152 42885 43698 43896 44435

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

項版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	$M \ (k N \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (k $N \cdot m$)	CASE M
	端部	-8. 611	5. 344	161. 14	6.00	8. 932	1
頂版	ハンチ始点	-1. 474	5. 344	27. 58	3. 50	1.661	1
	中 央	17. 213	5. 344	322. 10	3.50	17.400	1
	端部	-7. 618	14. 584	52. 23	6.00	8. 493	3
底版	ハンチ始点	0. 841	0. 250	335. 82	3. 50	0.850	1
	中 央	12. 147	0.250	851. 20	3.50	12. 156	1
	上端部	-8. 611	48. 176	17.87	5.00	11. 020	1
	上ハンチ点	-7. 847	48. 715	16. 11	2. 50	9.065	1
側壁	中間	-6.024	51. 110	11. 79	2.50	7.302	1
	下ハンチ点	-6. 102	50. 657	12. 05	2. 50	7. 369	1
	下端部	-7.618	54. 179	14.06	5.00	10. 327	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$d = c1 \times \sqrt{(Ms / b)}$$
 $h = d + d' < T$

 ここに、 M : 軸力を考慮した曲げモーメント
 (kN·m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

$$\sigma c^3 + [3 \times \sigma sa / (2 \times n) - 3 \times N \times (e + c) / (b \times da^2)] \times \sigma c^2$$
 $- 6 \times N \times (e + c) / (n \times b \times da^2) \times \sigma sa \times \sigma c$
 $- 3 \times N \times (e + c) / (N2 \times b \times da^2) \times \sigma sa^2 = 0$
上式を解いて σc を求める。また $da = T - d'$ とする。

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$

部材	点	Ms (kN·m/m)	必要有効高 d (cm)	必要部材厚 d+d'(cm)	部材厚 T(cm)	必要鉄筋量 As(cm²/m)
	端部	8. 932	5. 27	8.77	19.00	3. 581
頂版	ハンチ始点	1.661	2. 27	5. 77	14.00	0.710
	中 央	17. 400	7.35	10.85	14.00	11.806
	端部	8. 493	5. 13	8. 63	19. 00	2.804
底版	ハンチ始点	0.850	1. 62	5. 12	14.00	0. 510
	中 央	12. 156	6. 14	9.64	14.00	8. 278
	上端部	11. 020	5.85	9. 35	17. 00	2. 652
	上ハンチ点	9. 065	5. 30	8.80	12.00	4. 655
側壁	中間	7. 302	4.76	8. 26	12.00	2. 928
	下ハンチ点	7. 369	4. 78	8. 28	12.00	3. 016
	下端部	10. 327	5. 66	9. 16	17. 00	1. 905
				d+d' <	T	CHECK OK

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\sigma c = N / \{b \times x / 2 - n \times As / x (c + T / 2 - x)\}$$

$$\sigma s = n \times \sigma c / x \times (c + T / 2 - x)$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 16 - 14
 D 10 - 14
 D 13 - 14
 D 10 - 14
 D -0 - 0
 D 10 - 14

 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実 応	力	度 (N/mm^2)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σs'
頂版	端部	100.00	4. 993	4. 283	2.96	116. 4	0.0
	ハンチ始点	100.00	4. 993	3.784	0.95	25.3	0.0
	中 央	100.00	13.902	4.900	8.01	137.3	0.0
	端部	100.00	4. 993	4.628	2.63	92. 7	0.0
底版	ハンチ始点	100.00	8.869	4. 163	0.45	10.2	0.0
	中 央	100.00	8.869	4. 123	6.46	150.0	0.0
	上端部	100.00	4. 993	5.099	3.66	90. 5	0.0
	上ハンチ点	100.00	4. 993	3.511	7.04	150. 1	0.0
側壁	中間	100.00	4. 993	3.784	5. 33	99. 7	0.0
	下ハンチ点	100.00	4. 993	3.761	5. 41	102.2	0.0
	下端部	100.00	4. 993	5.540	3. 20	69.0	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	46. 550	4. 005	36. 387	29. 457				
頂版	M	1.098							
τ点	N	5. 344							
	最大	0							
	S	36. 414	6. 153	38. 536	31.605				
底版	M			1.886					
τ点	N			14. 584					
	最大			0					
	S	-4. 564	-1.890	-6. 233	-7. 308				
側壁上	M				-3. 786				
τ点	N				42. 151				
	最大				0				
	S	-1.701	3. 124	7.467	8.542				
側壁下 τ 点	M				-3.992				
	N				43.698				
	最大				\circ				

ここに、S: せん断力(kN)、M: モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$\tau = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot \tau a$$
 ここに、 S : せん断力 (kN) d : 有効高さ (cm) b : 部材幅 (cm)

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1.2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $ttll_1 \le Cn \le 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m) N:断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張鉄筋		鉄筋比	Cpt
	T	ď	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0.140	0.035	0. 106667	1.400	D16-7	13. 902	1. 303	1.500
底版 τ 点	0.140	0.035	0. 106667	1.400	D13-7	8.869	0.831	1.399
側壁上 τ 点	0. 125	0.035	0.090000	1.400	D10-7	4. 993	0.555	1. 233
側壁下 τ 点	0. 125	0.035	0.090000	1.400	D10-7	4. 993	0.555	1. 233

補正係数③を求める。

照査位置	M	N	Ac	Ic	у	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版τ点	1.098	5. 344	0.14000	0.000229	0.07000	0. 125	1. 114
底版 τ 点	1.886	14. 584	0.14000	0.000229	0.07000	0. 341	1. 181
側壁上 τ 点	-3. 786	42. 152	0. 12500	0.000163	0.06250	0.879	1. 232
側壁下 τ 点	-3. 992	43.698	0.12500	0.000163	0.06250	0. 912	1. 228

補正した許容せん断応力度

-					
照査位置	τα	補正係数			補正
		Се	Cpt	Cn	τа
頂版τ点	0. 270	1.400	1.500	1. 114	0. 631
底版 τ 点	0.270	1.400	1. 399	1. 181	0. 624
側壁上 τ 点	0. 270	1.400	1. 233	1. 232	0. 574
側壁下 τ 点	0.270	1.400	1. 233	1. 228	0.573

せん断応力度の照査

照査位置	せん断力	応力度	補正	判定			
	S	τ	τα				
	(kN)	(N/mm2)	(N/mm2)				
頂版 τ 点	46. 550	0.436	0.631	OK			
底版 τ 点	38. 536	0.361	0. 624	OK			
側壁上 τ 点	7. 308	0.081	0.574	OK			
側壁下 τ 点	8. 542	0.095	0.573	OK			

以上