

○内空寸法 : 内 幅(B) 1200 mm

内 高(H) 1200 mm 長 さ(L) 2000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $1200 \times (H) 1200 \times (L) 2000 \text{ [mm]}$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材 (地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) : $\gamma w = 9.0 [kN/m^3]$

1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) : $\alpha = 1.000$

(上 : T'荷重 横断通行 1.4 活荷重 載)

(輪接地幅 a = 0.20m b = 0.50m)

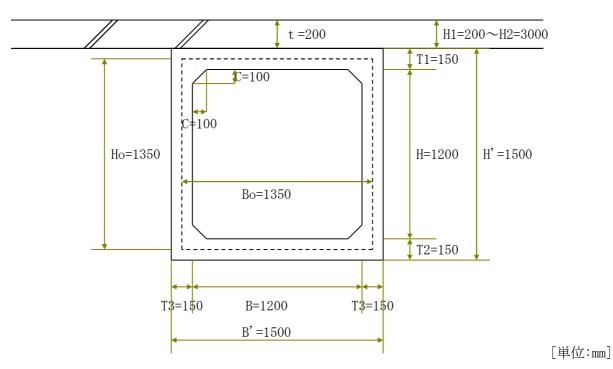
(側 載) : $Q = 10.0 [kN/m^2]$

1.5 衝擊係数 i = 0.300

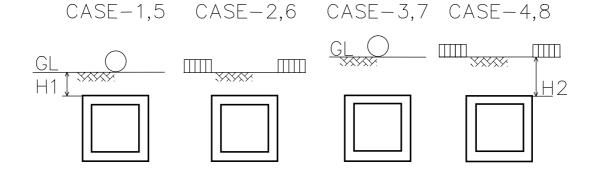
1.6 鉄筋かぶり : 頂 版 底 版 側 壁

> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$


1.8 許容応力度

鉄筋引張応力度 : σ sa = 160 [N/mm²] : $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度


コンクリート

設計基準強度 : $\sigma \, \mathrm{ck} = 35.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 : $\sigma ca = 11.7 [N/mm^2]$ せん断応力度 $\tau a = 0.260 [N/mm^2]$

1.9 標準断面図

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

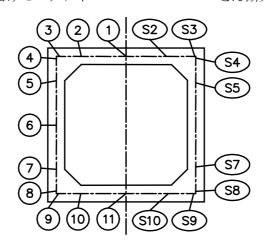
CASE 2, 4, 6, 8は、荷重がカルバート側載の場合

また

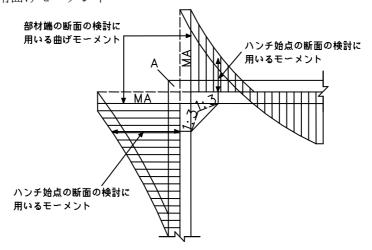
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

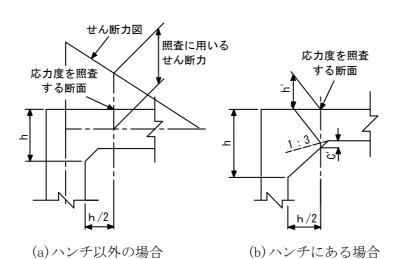
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 ${\cal C}$ の 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

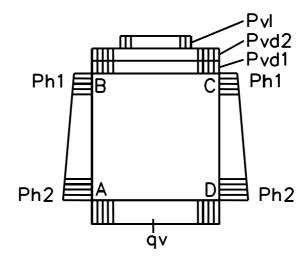
 $P vd1 = \gamma c \times T1 \qquad = 3.675 \text{ kN/m}^2$

- (2) 土圧
 - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\} = 2.925 kN/m2$$


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 15.075 \text{ kN/m}^2$$

- (3) 活荷重
 - ① 輸分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
 - ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²
- (4) 底版反力

$$q v = P v d1 + P v d2 + \{P v 1 \times u + \gamma c \times (2 \times T 3 \times H_0 + 2 \times C^2)\} / B_0 = 78.918 \text{ kN/m}^2$$

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 1.000
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.000
 $\text{N1} = 2 + \alpha = 3.000, \quad \text{N2} = 2 + \beta = 3.000$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 11.986 kN·m

CBC = $\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$ = 14.655 kN·m

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 1.551 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 1.182 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -5.597 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$/(N1 \times N2 - 1) = 6.357 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -6.389 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 6.389 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 8.299 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC$$
 = -8.299 kN·m

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x = 46.429 \text{ kN}$$

② 曲げモーメント

$$Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8$$

$$+ Pv1 \times u \times (Bo/2 - u/4)/2 + MBC = 15.900 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 37.486 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 11.590 kN \cdot m$$

- (3) 側壁
 - ① せん断力

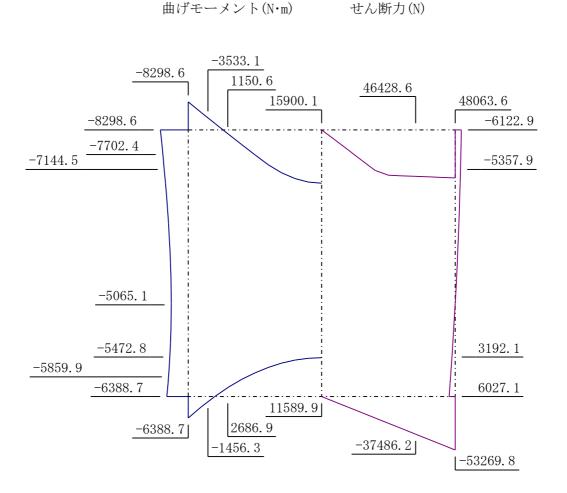
$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 3.192 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB + MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -5.358 kN


② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho) = 0$$

上式を用いて x を求めると。 x = 0.464 m

$$\begin{aligned} \mathsf{Mmax} &= \mathsf{S}\,\mathsf{AB} \times \mathbf{x} - \mathsf{P}\,\mathsf{hd2} \times \mathbf{x}^{\,2} / 2 \\ &- (\mathsf{P}\,\mathsf{hd1} - \mathsf{P}\,\mathsf{hd2}) \times \mathbf{x}^{\,3} / (6 \times \mathsf{Ho}) + \mathsf{MAB} \end{aligned} \qquad = -5.065 \; \mathsf{kN} \cdot \mathsf{m}$$

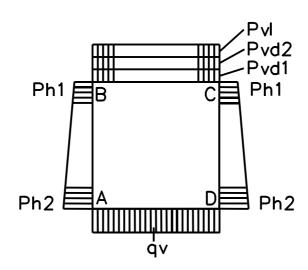
		[/単	位長]	
部材 照査点	距離	曲げモーメント	せん断力	軸力
	x (m)	M (N*m)	S (N)	N (N)
3,S3 端 部	0. 075	-8299	48064	6123
頂版 2 パチ始点	0. 175	-3533	*****	6123
S2 τ 点	0.200	1151	46429	6123
1 中央	0.675	15900	0	6123
 9, S9 端 部	0. 075	-6389	53270	6027
底版 10 パチ始点	0. 175	-1456	*****	6027
S10 τ 点	0.200	2687	37486	6027
11 中 央	0.675	11590	0	6027
 4, S4 上 端部	1. 275	-8299	-6123	48064
5 上ハンチ点	1. 175	-7702	*****	48449
S5 上 τ 点	1. 150	-7145	-5358	48835
側壁6 中 間	0.464	-5065	0	51480
S7 下 τ 点	0.200	-5473	3192	52499
7 下ハンチ点	0. 175	-5860	*****	52884
8,S8 下 端部	0.075	-6389 	6027	53270

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 3.675 \text{ kN/m}^2$$

- (2) 十圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t-t\,b\!+\!T1/2)\,\} \,+\!P\,q & = & 7.\,925\,\,kN/m^2 \end{array}$$

$$P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t-t\,b\!+\!T1/2\!+\!Ho)\,\} \,+\!P\,q & = & 20.\,075\,\,kN/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 15.888 kN/m^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.000$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.000$ $\text{N1} = 2 + \alpha = 3.000, \quad \text{N2} = 2 + \beta = 3.000$
- ② 荷 重 項

CAD =
$$q v \times B o^2 / 12$$
 = 2.413 kN·m
CBC = $\{(Pvd1 + Pvd2 + Pv1) \times B o^2\} / 12$ = 1.242 kN·m

 $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 2.311 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 1.942 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = 0.049 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = -0.250 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -2.462 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 2.462 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 1.491 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -1.491 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 3.883 \text{ kN}$

② 曲げモーメント

 $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 0.371 \text{ kN} \cdot \text{m}$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -5.599 kN$$

② 曲げモーメント

$$Mmax = q v \times B o^{2}/8 - MAD = 1.157 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 7.701 \text{ kN}$$

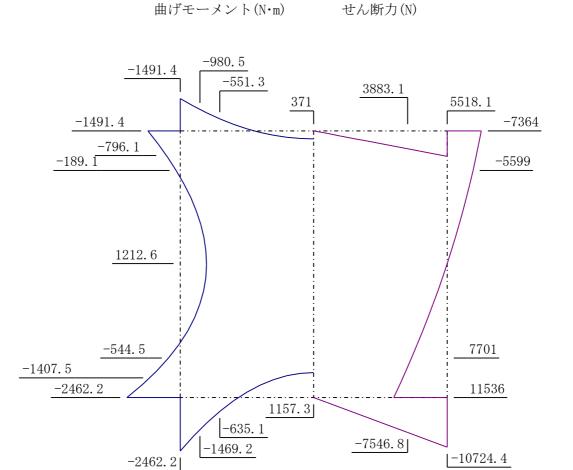
$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = -5.599 kN$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.678 m

$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB = 1.213 \text{ kN} \cdot \text{m}$$

RL433000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 //ν/f始点 S2 τ 点 1 中 央	0. 075 0. 175 0. 200 0. 675	-1491 -981 -551 371	5518 ****** 3883 0	7364 7364 7364 7364
底版	9, S9 端 部 10 ////////////////////////////////////	0. 075 0. 175 0. 200 0. 675	-2462 -1469 -635 1157	10724 ****** 7547 0	11536 11536 11536 11536
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ点 6 中 間 S7 下 τ点 7 下ννf点 8, S8 下 端部	1. 275 1. 175 1. 150 0. 678 0. 200 0. 175 0. 075	-1491 -796 -189 1213 -545 -1408 -2462	-7364 ***** -5599 0 7701 ****** 11536	5518 5904 6289 8110 9953 10339 10724

 $= 40.275 \text{ kN/m}^2$

2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 3.675 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

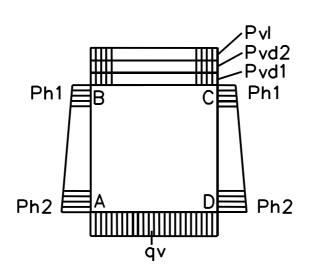
$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧

$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \}$$

$$= 28.125 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \}$$


 $+ \gamma s \times (H2 - t - t b + T1/2 + Ho)$

(3) 活荷重

① 輪分布幅
$$u = a + 2 \times H2$$
 $= 6.200 \text{ m}$ $v = b + 2 \times H2$ $= 6.500 \text{ m}$ $= 117.000 \text{ kN}$ $= 13.724 \text{ kN/m}^2$

(4) 底版反力 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 80.012 kN/m^2$

[荷重図]

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.000 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 1.000 $\text{N1} = 2 + \alpha = 3.000, \quad \text{N2} = 2 + \beta = 3.000$
- ② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 12.152 kN·m

 $CBC = \{ (Pvd1 + Pvd2 + Pv1) \times Bo^{2} \} / 12$ = 10.980 kN·m

 $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 5.379 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 5.010 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -3.286 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 3.086 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -8.866 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 8.866 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 7.895 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -7.895 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 34.342 \text{ kN}$$

② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_0^2 / 8 + P_{v1} \times B_0^2 / 8 + MBC = 8.576 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 38.006 \text{ kN}$$

② 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD = 9.362 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

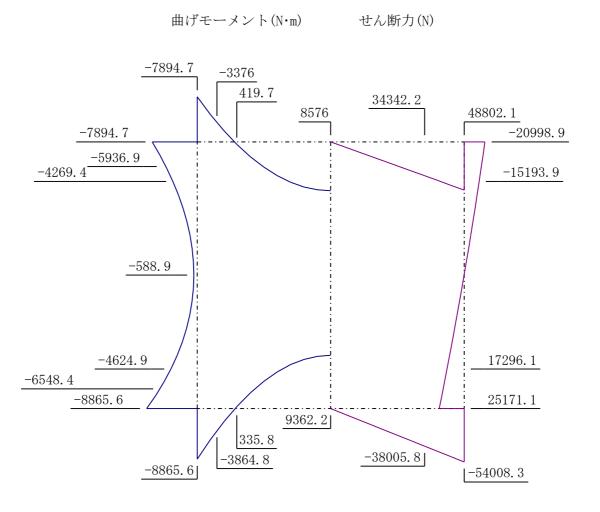
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 17.296 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB+MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -15.194 kN

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.676 m

$$\begin{array}{lll} M_{\text{max}} &=& S \text{ AB} \times \text{ x} - P \text{ hd2} \times \text{ x}^2 / 2 \\ &-& (P \text{ hd1} - P \text{ hd2}) \times \text{ x}^3 / (6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = & -0.589 \text{ kN} \cdot \text{m} \end{array}$$

RL433000

部材	照査点	距 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 075	-7895	48802	20999
	2 //νf始点	0. 175	-3376	******	20999
	S2 τ 点	0. 200	420	34342	20999
	1 中 央	0. 675	8576	0	20999
底版	9, S9 端 部	0. 075	-8866	54008	25171
	10 ///チ始点	0. 175	-3865	******	25171
	S10 τ 点	0. 200	336	38006	25171
	11 中 央	0. 675	9362	0	25171
側壁	4, S4 上 端部 5 上/ンチ点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下/ンチ点 8, S8 下 端部	1. 275 1. 175 1. 150 0. 676 0. 200 0. 175 0. 075	-7895 -5937 -4269 -589 -4625 -6548 -8866	-20999 ****** -15194 0 17296 ******	48802 49188 49573 51401 53237 53623 54008

2.4.1 設計荷重 (CASE - 4)

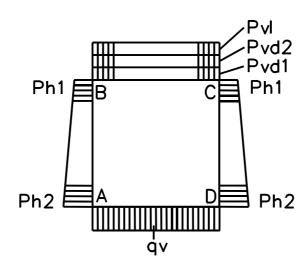
(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 3.675 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 33.125 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 45.275 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 66.288 kN/m^2$ [荷重図]

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 1.000$$
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 1.000$
 $\text{N1} = 2 + \alpha = 3.000, \quad \text{N2} = 2 + \beta = 3.000$

② 荷 重 項

 $CAD = q v \times Bo^{2}/12 = 10.067 \text{ kN} \cdot \text{m}$ $CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^{2}\}/12 = 8.896 \text{ kN} \cdot \text{m}$ $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2)/60 = 6.138 \text{ kN} \cdot \text{m}$ $CBA = (Ho^{2}) \times (2 \times Phd2 + 3 \times Phd1)/60 = 5.769 \text{ kN} \cdot \text{m}$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -1.864 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 1.664 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$\begin{aligned} \mathsf{MAB} &= 2 \times \theta \, \mathsf{A} + \theta \, \mathsf{B} - \mathsf{CAB} \\ \mathsf{MAD} &= \beta \times \theta \, \mathsf{A} + \mathsf{CAD} \end{aligned} &= -8.203 \, \, \mathsf{kN \cdot m} \\ \mathsf{MBA} &= 2 \times \theta \, \mathsf{B} + \theta \, \mathsf{A} + \mathsf{CBA} \end{aligned} &= 7.232 \, \, \mathsf{kN \cdot m} \\ \mathsf{MBC} &= \alpha \times \theta \, \mathsf{B} - \mathsf{CBC} \\ \mathsf{MAB} + \mathsf{MAD} &= 0 \\ \mathsf{MBA} + \mathsf{MBC} &= 0 \end{aligned}$$

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 $SXBC = (Pvd1+Pvd2+Pv1) \times Bo/2-(Pvd1+Pvd2+Pv1) \times x = 27.823 kN$
 - ② 曲げモーメント

$$M_{\text{max}} = (P_{\text{vd1}} + P_{\text{vd2}}) \times B_{\text{o}^2} / 8 + P_{\text{v1}} \times B_{\text{o}^2} / 8 + MBC = 6.112 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 31.487 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 6.898 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

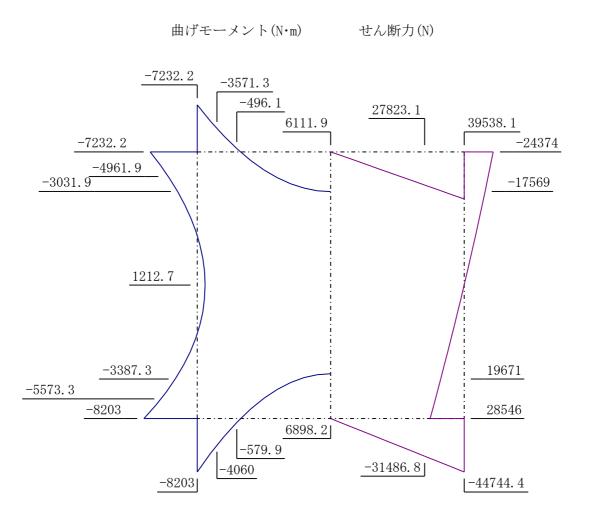
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 19.671 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB+MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -17.569 kN

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.676 m

$$\begin{aligned} \mathsf{M}\mathsf{m}\mathsf{a}\mathsf{x} &= \mathsf{S}\mathsf{A}\mathsf{B}\times\mathsf{x} - \mathsf{P}\mathsf{h}\mathsf{d}2\times\mathsf{x}^2/2 \\ &- (\mathsf{P}\mathsf{h}\mathsf{d}1 - \mathsf{P}\mathsf{h}\mathsf{d}2)\times\mathsf{x}^3/(6\times\mathsf{H}\mathsf{o}) + \mathsf{M}\mathsf{A}\mathsf{B} \end{aligned} \qquad = 1.213 \ \mathsf{k}\mathsf{N}\cdot\mathsf{m}$$

RL433000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
**** c	3, S3 端 部	0.075	-7232	39538	24374
頂版	2 ハンチ始点	0. 175	-3571	*****	24374
	S2 τ 点	0. 200	-496	27823	24374
	1 中央	0.675	6112	0	24374
	 9,S9 端 部	0.075	-8203	44744	28546
底版	10 ハンチ始点	0.175	-4060	*****	28546
	S10 τ 点	0.200	-580	31487	28546
	11 中 央	0.675	6898	0	28546
	 4,S4 上 端部	1. 275	-7232	-24374	39538
	5 上ハンチ点	1. 175	-4962	*****	39924
	S5 上 τ 点	1. 150	-3032	-17569	40309
側壁	6 中 間	0.676	1213	0	42137
	S7 下 τ 点	0.200	-3387	19671	43973
	7 下ハンチ点	0. 175	-5573	*****	44359
	8, S8 下 端部	0.075	-8203	28546	44744

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

項版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	M $(kN \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-8. 299	6. 123	135. 53	5. 67	8.646	1
頂版	ハンチ始点	-3. 533	6. 123	57. 70	4.00	3. 778	1
	中 央	15. 900	6. 123	259. 68	4.00	16. 145	1
	端部	-8.866	25. 171	35. 22	5. 67	10. 292	3
底版	ハンチ始点	-3. 865	25. 171	15. 35	4.00	4.872	3
	中 央	11. 590	6.027	192.30	4.00	11.831	1
	上端部	-8. 299	48.064	17. 27	5. 67	11.022	1
	上ハンチ点	-7. 702	48. 449	15. 90	4.00	9. 640	1
側壁	中間	-5.065	51. 480	9.84	4.00	7. 124	1
	下小兆点	-6. 548	53. 623	12. 21	4. 00	8. 693	3
	下端部	-8. 203	44. 744	18. 33	5. 67	10.738	4

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$k = n \times \sigma ca / (n \times \sigma ca + \sigma sa) = 0.523$$

 $c1 = \sqrt{[6 / \sigma ca / (3 - k) / k]} = 0.629$

$$d = c1 \times \sqrt{(Ms / b)} \qquad h = d + d' < T$$

$$h = d + d' < T$$

ここに、 M : 軸力を考慮した曲げモーメント $(kN \cdot m/m)$ b : 単位長 (cm) d': 鉄筋かぶり (cm) h : 必要部材厚 (cm) n : ヤング係数比 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

$$\sigma c^3 + [3 \times \sigma sa / (2 \times n) - 3 \times N \times (e + c) / (b \times da^2)] \times \sigma c^2$$
 $- 6 \times N \times (e + c) / (n \times b \times da^2) \times \sigma sa \times \sigma c$
 $- 3 \times N \times (e + c) / (N2 \times b \times da^2) \times \sigma sa^2 = 0$
上式を解いて σc を求める。また $da = T - d'$ とする。

 $:: s = n \times \sigma c / (n \times \sigma c \times \sigma sa)$

部材	点	Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
	端部	8. 646	5. 85	9. 35	18. 33	3. 586
頂版	ハンチ始点	3.778	3.87	7.37	15.00	1.827
	中 央	16. 145	7. 99	11.49	15.00	9. 736
	端部	10. 292	6. 38	9.88	18. 33	3. 185
底版	ハンチ始点	4.872	4. 39	7.89	15.00	1.304
	中央	11.831	6.84	10.34	15.00	6. 905
	上端部	11.022	6.60	10. 10	18. 33	2. 107
	上ハンチ点	9.640	6. 18	9.68	15.00	2.842
側壁	中間	7. 124	5. 31	8.81	15.00	1.057
	下ハンチ点	8.693	5.87	9.37	15.00	1.914
	下端部	10. 738	6. 52	10.02	18. 33	2. 177
				1 1' /	T	CHECK OF

d+d' < T CHECK OK

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\sigma c = N / \{b \times x / 2 - n \times As / x (c + T / 2 - x)\}$$

$$\sigma s = n \times \sigma c / x \times (c + T / 2 - x)$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 16 - 12
 D 10 - 12
 D 16 - 6
 D 10 - 12
 D -0 - 0
 D 10 - 12

 D 0 - 0
 D 0 - 0
 D 13 - 6
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実 応	力	度 (N/mm^2)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σs'
頂版	端部	100.00	4. 280	3. 934	3. 25	135. 1	0.0
	ハンチ始点	100.00	4. 280	3.510	2.08	71.1	0.0
	中 央	100.00	11. 916	4. 937	6.64	132.4	0.0
	端部	100.00	4. 280	4. 449	3. 47	121.3	0.0
底版	ハンチ始点	100.00	4. 280	4.364	2. 22	54. 5	0.0
	中 央	100.00	9.759	4.610	5. 15	115.5	0.0
	上端部	100.00	4. 280	5. 325	3. 17	84. 9	0.0
	上ハンチ点	100.00	4. 280	4.319	4.44	110.7	0.0
側壁	中間	100.00	4. 280	5. 226	2.79	50.3	0.0
	下ハンチ点	100.00	4. 280	4.733	3.70	79.4	0.0
	下端部	100.00	4. 280	5. 214	3. 15	87. 1	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	46. 429	3. 883	34. 342	27.823				
頂版	M	1. 151							
τ点	N	6. 123							
	最大	0							
	S	37. 486	7. 547	38.006	31. 487				
底版	M			0.336					
τ点	N			25. 171					
	最大			0					
	S	-5. 358	-5. 599	-15. 194	-17. 569				
側壁上	M				-3. 032				
τ 点	N				40. 309				
	最大				0				
	S	3. 192	7. 701	17. 296	19.671				
側壁下	M				-3. 387				
τ点	N				43. 973				
	最大				0				

ここに、S: せん断力(kN)、M:モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1.2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn)を τ a に乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $fttl, 1 \le Cn \le 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m)N: 断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張鉄筋		鉄筋比	Cpt
	T	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0. 150	0.035	0.115000	1.400	D16-6	11. 916	1.036	1.500
底版 τ 点	0.150	0.035	0. 115000	1.400	D16-3	9. 759	0.849	1. 409
					D13-3			
側壁上 τ 点	0.150	0.035	0.115000	1.400	D10-6	4. 280	0.372	1.072
側壁下 τ 点	0.150	0.035	0.115000	1.400	D10-6	4. 280	0.372	1.072

補正係数③を求める。

照査位置	M	N	Ac	Ic	У	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版 τ 点	1. 151	6. 123	0.15000	0.000281	0.07500	0. 153	1. 133
底版 τ 点	0.336	25. 171	0.15000	0.000281	0.07500	0.629	2.000
側壁上 τ 点	-3. 032	40.309	0. 15000	0.000281	0.07500	1. 007	1. 332
側壁下 τ 点	-3. 387	43. 973	0.15000	0.000281	0.07500	1. 098	1. 324

補正した許容せん断応力度

照査位置	τа	補正係数			補正
		Се	Cpt	Cn	τа
頂版 τ 点	0.260	1.400	1.500	1. 133	0. 619
底版 τ 点	0.260	1.400	1. 409	2.000	1. 026
側壁上 τ 点	0.260	1.400	1.072	1. 332	0. 520
側壁下 τ 点	0. 260	1.400	1.072	1. 324	0. 517

せん断応力度の照査

照査位置	査位置 せん断力		補正	判定			
	S	τ	τα				
	(kN)	(N/mm2)	(N/mm2)				
頂版 τ 点	46. 429	0.404	0. 619	OK			
底版 τ 点	38. 006	0.330	1. 026	OK			
側壁上 τ 点	17. 569	0. 153	0. 520	OK			
側壁下τ点	19.671	0. 171	0. 517	OK			

以上