

○内空寸法 : 内 幅(B) 700 mm

内 高(H) 500 mm 長 さ(L) 2000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 3.000 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) $700 \times (H) 500 \times (L) 2000 \text{ [mm]}$

: $H1 = 0.200 \sim H2 = 3.000 [m]$ 土被り

道路舗装厚 : t = 0.200 [m]

路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗装材 : $\gamma a = 22.5 [kN/m^3]$ 路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma \text{ bw} = 10.0 \text{ [kN/m}^3]$ 鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$ + (地下水位以下) $v = 9.0 [kN/m^3]$

1.3 土圧係数 平) (水 : Ka = 0.500(鉛 直) $\alpha = 1.000$

(上 : T'荷重 横断通行 1.4 活荷重 載)

(輪接地幅 a = 0.20m b = 0.50m)

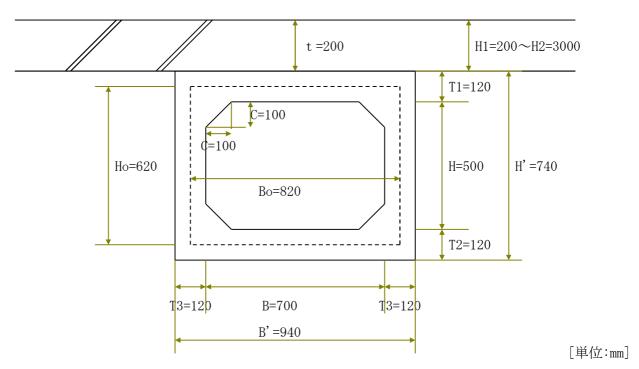
(側 載) : $Q = 10.0 [kN/m^2]$

1.5 衝擊係数 i = 0.300

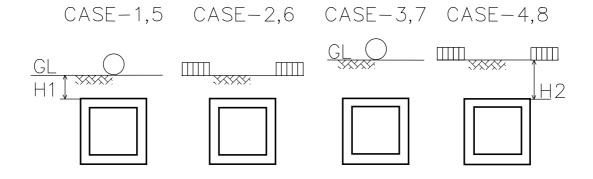
1.6 鉄筋かぶり : 頂 版 底 版 側 壁

> (内側) 35 mm 35 mm 35 mm (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$ (土被りH2) : $\beta = 0.9$


1.8 許容応力度

鉄筋引張応力度 : $\sigma \, \text{sa} = 160 \, [\, \text{N/mm}^2\,]$: $\sigma sy = 295 \left[N/mm^2 \right]$ 鉄筋降伏点応力度


コンクリート

設計基準強度 : $\sigma \, \mathrm{ck} = 40.0 \, [\,\mathrm{N/mm^2}]$ 曲げ圧縮応力度 : $\sigma ca = 14.0 [N/mm^2]$ せん断応力度 $\tau a = 0.270 [N/mm^2]$

1.9 標準断面図

1.10 荷重の組合せ

[荷重 CASE]

CASE 1, 3, 5, 7は、荷重がカルバート上載の場合

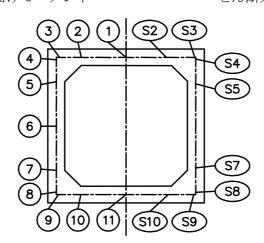
CASE 2, 4, 6, 8 は、荷重がカルバート側載の場合

また

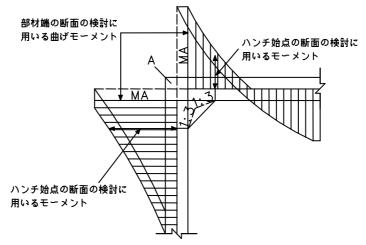
CASE 1, 2, 5, 6は、土被りH1 の場合

CASE 3, 4, 7, 8は、土被りH2 の場合

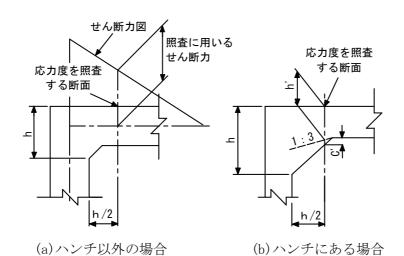
また


CASE 1, 2, 3, 4は、地下水の影響が無い場合

CASE 5, 6, 7, 8は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 C'の 1/3 まで大きくとります。

h' = T + C'/3

2.1.1 設計荷重 (CASE - 1)

(1) 頂版自重

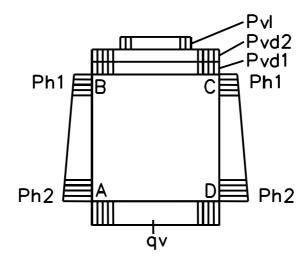
 $P vd1 = \gamma c \times T1 \qquad = 2.940 \text{ kN/m}^2$

- (2) 土圧
 - 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²

② 水平土圧

$$Phd1=Ka\times \{\gamma a\times t + \gamma b\times t b + \gamma s\times (H1-t-tb+T1/2)\}$$
 = 2.790 kN/m²


$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2 + Ho) \}$$

$$= 8.370 \text{ kN/m}^{2}$$

- (3) 活荷重
 - ① 輸分布幅 $u = a + 2 \times H1$ = 0.600 m $v = b + 2 \times H1$ = 0.900 m
 - ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 141.818 kN/m²
- (4) 底版反力

$$q v = P v d1 + P v d2 + \{P v 1 \times u + \gamma c \times (2 \times T 3 \times H_0 + 2 \times C^2)\} / B_0$$
 = 116.253 kN/m²

[荷重図]

2.1.2 構 造 解 析 (CASE - 1)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

① 係 数

$$\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$$
 = 0.756
 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.756
 $\text{N1} = 2 + \alpha = 2.756$, $\text{N2} = 2 + \beta = 2.756$

② 荷 重 項

 $CAD = q v \times B o^2 / 12$ = 6.514 kN·m

CBC =
$$\{2 \times (P \text{ vd1} + P \text{ vd2}) \times B \text{ o}^3 + P \text{ v1} \times u \times (3 \times B \text{ o}^2 - u^2)\} / (24 \times B \text{ o})$$
 = 7.582 kN·m

$$CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.197 \text{ kN} \cdot \text{m}$$

$$CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.161 \text{ kN} \cdot \text{m}$$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}$$

$$/(N1 \times N2 - 1) = -3.765 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}$$

$$-(N1 \times N2 - 1) = 4.059 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$MAB = 2 \times \theta A + \theta B - CAB = -3.667 \text{ kN} \cdot \text{m}$$

$$MAD = \beta \times \theta A + CAD = 3.667 \text{ kN} \cdot \text{m}$$

$$MBA = 2 \times \theta B + \theta A + CBA = 4.513 \text{ kN} \cdot \text{m}$$

$$MBC = \alpha \times \theta B - CBC = -4.513 \text{ kN} \cdot \text{m}$$

MAB + MAD = 0

MBA + MBC = 0

2.1.3 各部材の断面力 (CASE - 1)

- (1) 頂版
 - ① せん断力

$$S XBC = \{ (P vd1 + P vd2) \times B o + P v1 \times u \} / 2 - (P vd1 + P vd2 + P v1) \times x + P v1 = 35.822 \text{ kN}$$

② 曲げモーメント

$$\begin{aligned} \mathsf{Mmax} &= (\mathsf{P}\,\mathsf{vd1} + \mathsf{P}\,\mathsf{vd2}) \times \mathsf{B}\,\mathsf{o}^2/8 \\ &+ \mathsf{P}\,\mathsf{v1} \times \mathsf{u} \times (\mathsf{B}\,\mathsf{o}/2 - \mathsf{u}/4)/2 + \mathsf{MBC} \end{aligned} = 7.174 \ \mathsf{kN}\,\mathsf{\cdot m}$$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = 27.901 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 6.104 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = -0.639 \text{ kN}$$

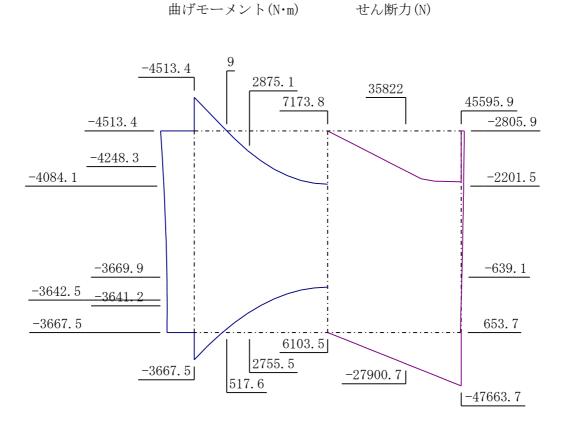
$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -2.201 kN$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB-Phd2 \times x - (Phd1-Phd2) \times x^2 / (2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.082 m

$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$

$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= -3.641 \text{ kN} \cdot \text{m}$$

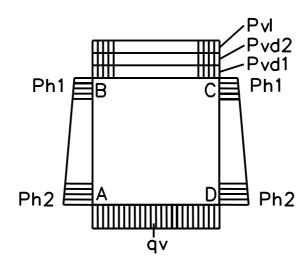
			[/単位	过長]	
部材	照査点	距離	曲げモーメント	せん断力	軸力
		\mathbf{x} (m)	$\mathbf{M}\left(\mathbb{N}\mathbf{\ast }_{\mathtt{M}}\right)$	S (N)	N(N)
3, S3	 端 部	0.060	-4513	45596	2806
頂版 2	ハンチ始点	0.160	9	****	2806
S2	τ点	0.170	2875	35822	2806
1	中央	0.410	7174	0	2806
9, S9	端 部	0.060	-3668	47664	654
底版 10	ハンチ始点	0.160	518	****	654
S10	τ点	0.170	2756	27901	654
11	中央	0.410	6104	0	654
4, S4	 上 端部	0. 560	-4513	-2806	45596
5	上ハンチ点	0.460	-4248	*****	45929
S5	上 τ点	0.450	-4084	-2202	46163
側壁 6	中間	0.082	-3641	0	47390
S7	下 τ点	0. 170	-3670	-639	47097
7	下ハンチ点	0. 160	-3643	*****	47330
8, S8	下 端部	0.060	-3668	654	47664

- 2.2.1 設計荷重 (CASE 2)
 - (1) 頂版自重

$$P vd1 = \gamma c \times T1 \qquad = 2.940 \text{ kN/m}^2$$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 4.500 kN/m²


② 水平土圧

$$\begin{array}{lll} P\,hd1\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2)\,\} & +P\,q \end{array} \\ = & 7.\,790\,\,k\,N/m^2 \\ P\,hd2\!=\!K\,a\!\times\! & \{\,\gamma\,a\!\times\!t\!+\!\gamma\,b\!\times\!t\,b \\ & +\gamma\,s\!\times\!(H1\!-\!t\!-\!t\,b\!+\!T1/2\!+\!Ho)\,\} & +P\,q \end{array} \\ = & 13.\,370\,\,k\,N/m^2 \end{array}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 12.483 \text{ kN/m}^2$ [荷重図]

2.2.2 構 造 解 析 (CASE - 2)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3) = 0.756$ $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3) = 0.756$ $\text{N1} = 2 + \alpha = 2.756, \quad \text{N2} = 2 + \beta = 2.756$
- ② 荷 重 項

 $CAD = q v \times B o^2 / 12 = 0.699 \text{ kN} \cdot \text{m}$

CBC = $\{(P vd1 + P vd2 + P v1) \times B o^2\} / 12$ = 0.417 kN·m

 $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 0.357 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.321 \text{ kN} \cdot \text{m}$

③ たわみ角

 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -0.158 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 0.092 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -0.580 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 0.580 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 0.347 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -0.347 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.2.3 各部材の断面力 (CASE - 2)

- (1) 頂版
 - ① せん断力

 $SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 1.786 \text{ kN}$

② 曲げモーメント

 $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC = 0.278 \text{ kN} \cdot \text{m}$

- (2) 底 版
 - ① せん断力

$$S XAD = q v \times B o / 2 - q v \times x = -1.161 kN$$

② 曲げモーメント

$$Mmax = qv \times Bo^{2}/8 - MAD = 0.469 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 1.801 \text{ kN}$$

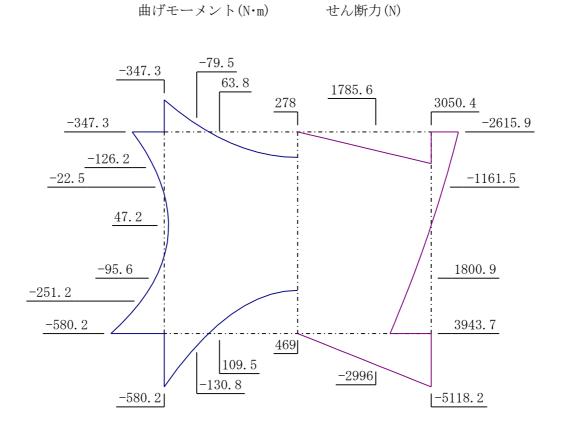
$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = -1.161 \text{ kN}$$

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。


$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.332 m

$$Mmax = SAB \times x - Phd2 \times x^{2}/2$$

$$- (Phd1 - Phd2) \times x^{3}/(6 \times Ho) + MAB = 0.047 \text{ kN} \cdot \text{m}$$

RL405000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0.060	-347	3050	2616
頂版	2 ハンチ始点	0. 160	-80	*****	2616
	S2 τ 点	0.170	64	1786	2616
	1 中央	0.410	278	0	2616
	 9, S9 端 部	0.060	-580	5118	3944
底版	10 パチ始点	0.160	-131	*****	3944
	S10 τ 点	0.170	110	2996	3944
	11 中 央	0.410	469	0	3944
	 4, S4 上 端部	0. 560	-347	-2616	3050
	5 上ハンチ点	0.460	-126	*****	3384
	S5 上 τ 点	0.450	-23	-1162	3617
側壁	6 中 間	0.332	47	0	4011
	S7 下 τ 点	0.170	-96	1801	4551
	7 下ハンチ点	0. 160	-251	*****	4785
	8, S8 下 端部	0.060	-580	3944	5118

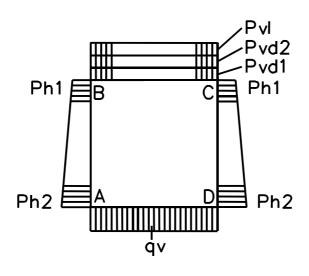
2.3.1 設計荷重 (CASE - 3)

(1) 頂版自重

 $P vd1 = \gamma c \times T1 \qquad = 2.940 \text{ kN/m}^2$

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²


② 水平土圧

Phd1=
$$Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H2 - t - t b + T1/2) \}$$
 = 27.990 kN/m²

$$P hd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H2 - t - t b + T1/2 + Ho) \}$$
 = 33.570 kN/m²

- (3) 活荷重
 - ① 輸分布幅 $u = a + 2 \times H2$ = 6.200 m $v = b + 2 \times H2$ = 6.500 m
 - ② 活荷重 $P1 = 0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ = 13.724 kN/m²
- (4) 底版反力 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 76.608 kN/m^2$

[荷重図]

2.3.2 構 造 解 析 (CASE - 3)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.756 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.756 $\text{N1} = 2 + \alpha = 2.756$, $\text{N2} = 2 + \beta = 2.756$
- ② 荷 重 項

CAD = $q v \times B o^2 / 12$ = 4.293 kN·m CBC = $\{(P v d1 + P v d2 + P v1) \times B o^2\} / 12$ = 4.010 kN·m

 $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60 = 1.004 \text{ kN} \cdot \text{m}$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60 = 0.968 \text{ kN} \cdot \text{m}$

- ③ たわみ角
 - $\theta A = \{N1 \times (CAB CAD) (CBC CBA)\} / (N1 \times N2 1) = -1.835 \text{ kN} \cdot \text{m}$

 $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1) = 1.770 \text{ kN} \cdot \text{m}$

④ 端モーメント

 $MAB = 2 \times \theta A + \theta B - CAB = -2.905 \text{ kN} \cdot \text{m}$

 $MAD = \beta \times \theta A + CAD = 2.905 \text{ kN} \cdot \text{m}$

 $MBA = 2 \times \theta B + \theta A + CBA = 2.672 \text{ kN} \cdot \text{m}$

 $MBC = \alpha \times \theta B - CBC = -2.672 \text{ kN} \cdot \text{m}$

MAB + MAD = 0

MBA + MBC = 0

2.3.3 各部材の断面力 (CASE - 3)

- (1) 頂版
 - ① せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x = 17.175 \text{ kN}$$

② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_0^2 / 8 + P_{v1} \times B_0^2 / 8 + MBC = 3.343 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 18.386 \text{ kN}$$

② 曲げモーメント

$$Mmax = qv \times Bo^2/8 - MAD = 3.534 kN \cdot m$$

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho) = 4.629 kN$$

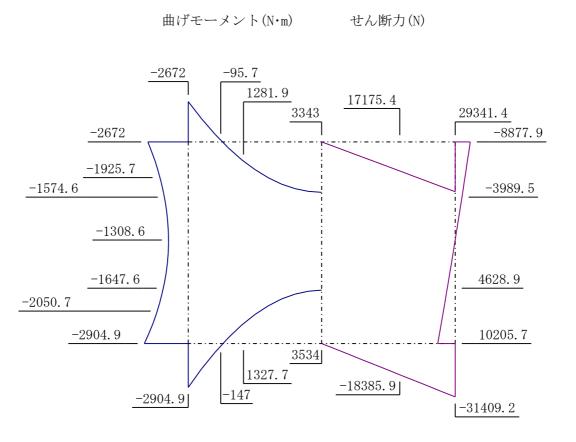
S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $- (MAB + MBA) / Ho$
 $- Phd2 \times x + (Phd2 - Phd1) \times x^2 / (2 \times Ho)$ = -3.990 kN

② 曲げモーメント

接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.318 m


$$\text{Mmax} = \text{SAB} \times \text{x} - \text{Phd2} \times \text{x}^2/2$$

$$- (\text{Phd1} - \text{Phd2}) \times \text{x}^3/(6 \times \text{Ho}) + \text{MAB}$$

$$= -1.309 \text{ kN} \cdot \text{m}$$

RL405000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部	0. 060	-2672	29341	8878
	2 //νf始点	0. 160	-96	******	8878
	S2 τ 点	0. 170	1282	17175	8878
	1 中 央	0. 410	3343	0	8878
底版	9, S9 端 部	0. 060	-2905	31409	10206
	10 //ンチ始点	0. 160	-147	******	10206
	S10 τ 点	0. 170	1328	18386	10206
	11 中 央	0. 410	3534	0	10206
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下ννf点 8, S8 下 端部	0. 560 0. 460 0. 450 0. 318 0. 170 0. 160 0. 060	-2672 -1926 -1575 -1309 -1648 -2051 -2905	-8878 ***** -3990 0 4629 ****** 10206	29341 29675 29908 30349 30842 31076 31409

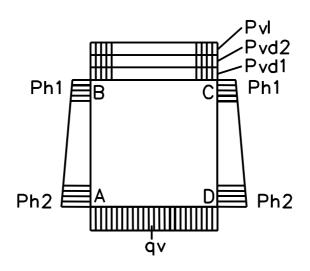
- 2.4.1 設計荷重 (CASE 4)
- (1) 頂版自重

$$P vd1 = \gamma c \times T1$$
 = 2.940 kN/m²

- (2) 土圧
 - ① 鉛直土圧

$$P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$$
 = 54.900 kN/m²

② 水平土圧


$$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2) \} + Pq = 32.990 \text{ kN/m}^{2}$$

$$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b \\ + \gamma s \times (H2 - t - t b + T1/2 + Ho) \} + Pq = 38.570 \text{ kN/m}^{2}$$

ここに、Pq はカルバート側面に作用する活荷重による水平土圧で $Pq = Ka \times 10.0 = 5.0 \text{ kN/m}^2$ とする。

- (3) 活荷重 Pvl = 0
- (4) 底版反力

 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo = 62.883 kN/m^2$ [荷重図]

 $= 1.128 \text{ kN} \cdot \text{m}$

2.4.2 構 造 解 析 (CASE - 4)

ボックスカルバートの断面力の算定は、ラーメン構造として解析する。 なお、ラーメン解析は、部材節点の剛域を考慮しないたわみ角法 によって行う。

(1) ラーメン計算

- ① 係 数
 - $\alpha = (\text{Ho} \times \text{T1}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.756 $\beta = (\text{Ho} \times \text{T2}^3) / (\text{Bo} \times \text{T3}^3)$ = 0.756 $\text{N1} = 2 + \alpha = 2.756$, $\text{N2} = 2 + \beta = 2.756$
- ② 荷 重 項

$$CAD = q v \times Bo^{2}/12 = 3.524 \text{ kN} \cdot \text{m}$$

$$CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^{2}\}/12 = 3.241 \text{ kN} \cdot \text{m}$$

$$CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2)/60 = 1.164 \text{ kN} \cdot \text{m}$$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$

③ たわみ角

$$\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\} / (N1 \times N2 - 1) = -1.306 \text{ kN} \cdot \text{m}$$

$$\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\} / (N1 \times N2 - 1) = 1.240 \text{ kN} \cdot \text{m}$$

④ 端モーメント

$$\begin{aligned} \text{MAB} &= 2 \times \theta \, \text{A} + \theta \, \text{B} - \text{C} \, \text{AB} \\ \text{MAD} &= \beta \times \theta \, \text{A} + \text{C} \, \text{AD} \\ \text{MBA} &= 2 \times \theta \, \text{B} + \theta \, \text{A} + \text{C} \, \text{BA} \end{aligned} \qquad \begin{aligned} &= -2.536 \, \, \text{kN} \cdot \text{m} \\ &= 2.536 \, \, \text{kN} \cdot \text{m} \\ \text{MBC} &= 2.303 \, \, \text{kN} \cdot \text{m} \end{aligned}$$

MAB + MAD = 0

MBA + MBC = 0

2.4.3 各部材の断面力 (CASE - 4)

- (1) 頂版
 - ① せん断力 SXBC = (Pvd1+Pvd2+Pv1)×Bo/2-(Pvd1+Pvd2+Pv1)×x = 13.882 kN
 - ② 曲げモーメント

$$M_{max} = (P_{vd1} + P_{vd2}) \times B_0^2 / 8 + P_{v1} \times B_0^2 / 8 + MBC = 2.558 \text{ kN} \cdot \text{m}$$

- (2) 底 版
 - ① せん断力

$$SXAD = qv \times Bo/2 - qv \times x = 15.092 \text{ kN}$$

② 曲げモーメント

$$M_{\text{max}} = q_{\text{V}} \times B_{\text{O}}^2 / 8 - M_{\text{AD}}$$
 = 2.749 kN·m

- (3) 側壁
 - ① せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

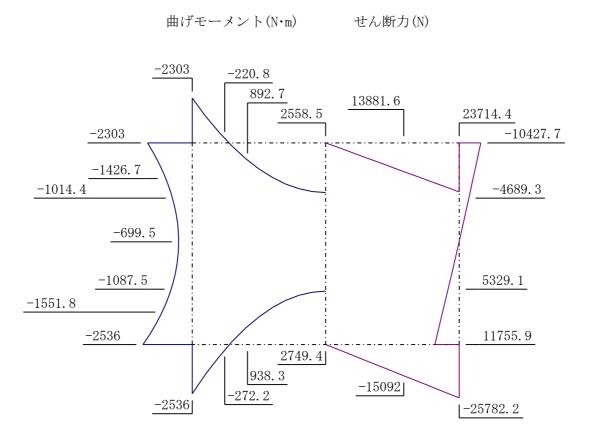
$$- (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^{2}/(2 \times Ho) = 5.329 \text{ kN}$$

S XBA =
$$Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3$$

 $-(MAB+MBA)/Ho$
 $-Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$ = -4.689 kN

② 曲げモーメント


接点間の極値は、せん断力が0となる地点に生じる。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2/(2 \times Ho)$$
 = 0
上式を用いて x を求めると。 x = 0.316 m

$$\begin{array}{lll} M_{\text{max}} &=& S \text{ AB} \times \text{ x} - P \text{ hd2} \times \text{ x}^2 / 2 \\ &-& (P \text{ hd1} - P \text{ hd2}) \times \text{ x}^3 / (6 \times \text{Ho}) + \text{MAB} \end{array} \qquad = & -0.700 \text{ kN} \cdot \text{m} \end{array}$$

RL405000

部材	照査点	距 離 x(m)	曲げモーメント M (N*m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3,S3 端 部 2 ///////////////////////////////////	0. 060 0. 160 0. 170	-2303 -221 893	23714 ****** 13882	10428 10428 10428
	1 中央	0.410	2559	0	10428
底版	9, S9 端 部 10 ////- //- //- //- //- //- //- 点 S10 τ 点 11 中 央	0. 060 0. 160 0. 170 0. 410	-2536 -272 938 2749	25782 ****** 15092 0	11756 11756 11756 11756
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ点 6 中 間 S7 下 τ点 7 下ννf点 8, S8 下 端部	0. 560 0. 460 0. 450 0. 316 0. 170 0. 160 0. 060	-2303 -1427 -1014 -700 -1088 -1552 -2536	-10428 ***** -4689 0 5329 ****** 11756	23714 24048 24281 24728 25215 25449 25782

3 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 N : 軸 力
 (kN)

 e : M/N 偏位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100 \quad (kN \cdot m)$

但し、軸力は

頂版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	M $(kN \cdot m)$	N (kN)	e (cm)	c (cm)	Ms (kN⋅m)	CASE M
	端部	-4. 513	2. 806	160. 85	4. 17	4. 630	1
頂版	ハンチ始点	0.009	2. 806	0.32	2. 50	0.079	1
	中 央	7. 174	2.806	255. 67	2. 50	7. 244	1
	端部	-3. 667	0.654	561. 04	4. 17	3.695	1
底版	ハンチ始点	0. 518	0. 654	79. 18	2.50	0.534	1
	中 央	6. 104	0.654	933. 69	2.50	6. 120	1
	上端部	-4. 513	45. 596	9. 90	4. 17	6.413	1
	上ハンチ点	-4. 248	45. 929	9. 25	2.50	5. 397	1
側壁	中間	-3.641	47. 390	7.68	2.50	4.826	1
	下ハンチ点	-3. 643	47. 330	7. 70	2. 50	4.826	1
	下端部	-2.905	31. 409	9. 25	4. 17	4. 214	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

4 必要有効高および必要鉄筋量

4.1 必要有効高

$$d = c1 \times \sqrt{(Ms / b)}$$
 $h = d + d' < T$

 ここに、 M : 軸力を考慮した曲げモーメント
 (kN·m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

4.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σsa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

部材	点	Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
·	端部	4. 630	3. 79	7. 29	15. 33	2. 471
頂版	ハンチ始点	0.079	0.50	4.00	12.00	-0. 116
	中 央	7. 244	4.74	8. 24	12.00	5.896
	端部	3. 695	3. 39	6.89	15. 33	2.054
底版	ハンチ始点	0. 534	1. 29	4. 79	12.00	0. 367
-	中央	6. 120	4. 36	7.86	12. 00	5. 040
	上端部	6.413	4.46	7. 96	15. 33	0.864
	上ハンチ点	5. 397	4. 09	7. 59	12.00	1.580
側壁	中間	4.826	3.87	7.37	12.00	0.996
	下ハンチ点	4. 826	3. 87	7. 37	12. 00	1.000
	下端部	4. 214	3. 62	7. 12	15. 33	0. 437

 $\mathrm{d}+\mathrm{d}$ ' < T CHECK OK

5 配筋及び実応力度

実応力度は、次式により計算する。

5.1 コンクリート及び鉄筋

$$\begin{array}{l} \sigma\,c \,=\, N \,\,/\,\, \{b \,\,\times\,\, x \,\,/\,\, 2 \,-\,\, n \,\,\times\,\, As \,\,/\,\, x \,\,(\,c \,\,+\,\, T \,\,/\,\, 2 \,-\,\, x)\}\\ \sigma\,s \,=\, n \,\,\times\,\, \sigma\,c \,\,/\,\, x \,\,\times\,\, (\,c \,\,+\,\, T \,\,/\,\, 2 \,\,-\,\, x) \end{array}$$

N : 軸力 ここに、 (kN)b : 部材幅 (cm) T : 部材厚 (cm) c : 部材中心軸と鉄筋間距離 (cm) As: 主鉄筋断面積 (cm^2/m) x : 中心軸。次の3次元方程式より求める。 $x^3 - 3 \times (T / 2 - e) \times x^2$ + 6 \times n \times As / b \times (e + c) \times x $-6 \times n \times As / b \times (c + T / 2)$ \times (e + c) = 0

e : 偏位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 13 - 12
 D 10 - 12
 D 13 - 6
 D 10 - 12
 D -0 - 0
 D 10 - 12

 D 0 - 0
 D 0 - 0
 D 10 - 6
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実 応	力	度(N/mm²)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σ s'
	端部	100.00	4. 280	3.402	2.54	94. 6	0.0
頂版	ハンチ始点	100.00	7.602	3.700	0.03	0.1	0.0
	中 央	100.00	7.602	3.445	5. 72	125.9	0.0
	端部	100.00	4. 280	3. 335	2.07	79.0	0.0
底版	ハンチ始点	100.00	5. 941	3.218	0.45	11.0	0.0
	中 央	100.00	5. 941	3. 111	5. 27	136. 9	0.0
	上端部	100.00	4. 280	5.380	2.37	42.7	0.0
	上ハンチ点	100.00	4. 280	3.904	3.84	67.8	0.0
側壁	中間	100.00	4. 280	4. 241	3. 21	48.4	0.0
	下ハンチ点	100.00	4. 280	4. 237	3.21	48.5	0.0
	下端部	100.00	4. 280	5.588	1.51	25. 4	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

6 せん断力に対する検討

6.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	35. 822	1. 786	17. 175	13.882				
頂版	M	2.875							
τ点	N	2.806							
	最大	0							
	S	27. 901	2.996	18.386	15.092				
底版	M	2.756							
τ点	N	0.654							
	最大	0							
	S	-2. 201	-1. 161	-3.990	-4. 689				
側壁上	M				-1.014				
τ点	N				24. 281				
	最大				0				
	S	-0.639	1.801	4. 629	5. 329				
側壁下	M				-1.087				
τ点	N				25. 215				
	最大				0				

ここに、S: せん断力(kN)、M: モーメント(kN・m)、N: 軸力(kN)を示す。

6.2 せん断応力度の照査

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$\tau = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot \tau a$$
 ここに、 S : せん断力 (kN) d : 有効高さ (cm) b : 部材幅 (cm)

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1. 0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) をτa に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和をbd で除して求める。

Г	コロビタサムケ いょ (0/)					1 0 01 1
	引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
ſ	補正係数(Cpt)	0. 7	0.9	1.0	1. 2	1.5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数(Cn) をτaに乗じる。

Cn = 1 + Mo/M $Mo = N/Ac \cdot Ic/y$ $fttl, 1 \le Cn \le 2$

ここに、Cn:軸方向力による補正係数

Mo:軸方向力によりコンクリートの応力度が引張縁で0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m) N: 断面に作用する軸方向圧縮力(kN)

Ic: 図心軸に関する断面二次モーメント(m4)

Ac: 部材断面積(m2)

y:断面図心より引張縁までの距離(m)

補正係数①、②を求める。

照査位置	部材厚	かぶり	有効高	Се	引張鉄筋		鉄筋比	Cpt
	T	ď'	d		径-本数	As	Pt	
	(m)	(m)	(m)			(cm2)	(%)	
頂版 τ 点	0. 120	0.035	0.085000	1.400	D13-6	7. 602	0.894	1. 436
底版 τ 点	0. 120	0.035	0.085000	1.400	D13-3	5. 941	0.699	1.319
					D10-3			
側壁上τ点	0. 120	0.035	0.085000	1.400	D10-6	4. 280	0.504	1. 202
側壁下 τ 点	0.120	0.035	0.085000	1.400	D10-6	4. 280	0.504	1.202

補正係数③を求める。

照査位置	M	N	Ac	Ic	У	Мо	Cn
	(kN • m)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版 τ 点	2.875	2.806	0.12000	0.000144	0.06000	0.056	1.020
底版 τ 点	2. 756	0.654	0.12000	0.000144	0.06000	0.013	1.005
側壁上τ点	-1.014	24. 281	0.12000	0.000144	0.06000	0. 486	1. 479
側壁下 τ 点	-1.088	25. 215	0.12000	0.000144	0.06000	0.504	1.464

補正した許容せん断応力度

照査位置	τа	補正係数			補正
		Се	Cpt	Cn	τа
頂版 τ 点	0. 270	1.400	1. 436	1.020	0. 553
底版 τ 点	0. 270	1.400	1.319	1.005	0. 501
側壁上 τ 点	0. 270	1.400	1. 202	1. 479	0.672
側壁下 τ 点	0.270	1.400	1. 202	1.464	0.665

せん断応力度の照査

照査位置	質査位置 せん断力		補正	判定
	S	τ	τα	
	(kN)	(N/mm2)	(N/mm2)	
頂版 τ 点	35. 822	0.421	0. 553	OK
底版 τ 点	27. 901	0.328	0. 501	OK
側壁上τ点	4. 689	0.055	0.672	OK
側壁下τ点	5. 329	0.063	0.665	OK

以上