

○内空寸法: 内 幅(B) 4000 mm

内 高 (H) 2800 mm 長 さ (L) 1000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.200 m H2= 1.500 m

千葉窯業株式会社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) 4000 × (H) 2800 × (L) 1000 [mm]

土被り : $H1 = 0.200 \sim H2 = 1.500 [m]$

道路舗装厚 : t = 0.200 [m] 路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗 装 材 : $\gamma a = 22.5 [kN/m^3]$

路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma bw = 10.0 [kN/m^3]$

土 (地下水位以下) : $\gamma W = 9.0 [kN/m^3]$

1.3 土圧係数 (水平) : Ka = 0.500

(鉛 直) $: \alpha = 1.000$

1.4 活荷重 (上載) : T'荷重 横断通行

(輪接地幅 a = 0.20m b = 0.50m)

(側載) : $Q = 10.0 [kN/m^2]$

- 1.5 衝撃係数 : i = 0.300
- 1.6 鉄筋かぶり : 頂版 底版 側壁

: (内側) 35 mm 35 mm 35 mm: (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) : β = 1.0

(土被りH2) : $\beta = 0.9$

- 1.8 許容応力度
- 1.8.1 鉄筋

引張応力度 : $\sigma \, \text{sa} = \, 160 \, [\, \text{N/mm}^2\,]$ 降伏点応力度 : $\sigma \, \text{sy} = \, 295 \, [\, \text{N/mm}^2\,]$

弹性係数 : Es = $2.0 \times 10^5 [N/mm^2]$

1.8.2 コンクリート

: $\sigma \, \mathrm{ck} = 40.0 \, \mathrm{N/mm^2}$ (1) 設計基準強度

(2) プレストレストコンクリート部材

PS導入時強度 : $\sigma \text{ ck'} = 35.0 \text{ N/mm}^2$

PS導入直後

許容曲げ圧縮応力度 : $\sigma \cot = 19.0 \text{ N/mm}^2$: $\sigma \tan = -1.5 \text{ N/mm}^2$ 許容曲げ引張応力度

設計荷重作用時

許容曲げ圧縮応力度 : $\sigma \, \text{ca} = 15.0 \, \text{N/mm}^2$ 許容曲げ引張応力度 : $\sigma \, \text{ta} = -1.5 \, \text{N/mm}^2$

(死荷重作用時)

許容曲げ引張応力度 : $\sigma ta' = 0.0 \text{ N/mm}^2$ 許容せん断応力度 $\tau a = 0.270 \text{ N/mm}^2$ 許容斜引張応力度 : $\sigma ia = -1.0 \text{ N/mm}^2$

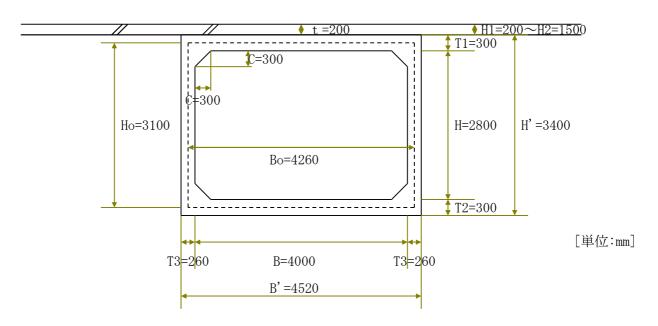
(3) 鉄筋コンクリート部材

許容曲げ圧縮応力度 : $\sigma \, \text{ca} = 14.0 \, \text{N/mm}^2$ 許容せん断応力度 $\tau a = 0.270 \text{ N/mm}^2$

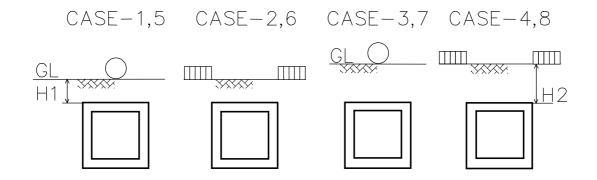
(4) 弹性係数 : Ec = $3.1 \times 10^4 \text{ N/mm}^2$

1.8.3 PC鋼棒 (SBPR 1080 / 1230 C種1号)

(1) 許容引張応力度


引張強度 : σ pu = 1230 N/mm^2 降伏点強度 1080 N/mm^2 : σ py = プレストレッシング中 : $\sigma pia =$ 972 N/mm^2 プレストレッシング直後 : $\sigma pca = 861 \text{ N/mm}^2$ 設計荷重作用時 738 N/mm^2 : σ pea =

(2) 弾性係数 $2.0 \times 10^5 \text{ N/mm}^2$ $: E_{p} =$


(3) 使用 P C 鋼棒

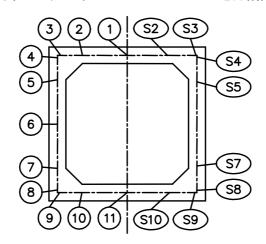
	頂版	底版	側壁	
径	ϕ 23	ϕ 23	****	(mm)
断面積	415.50	415.50	****	(mm^2)
設計引張力	345000	345000	****	(N)

1.11 標準断面図

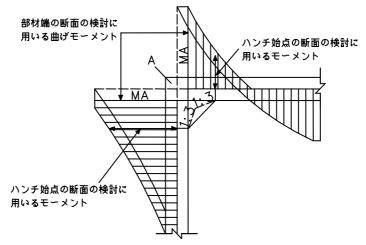
1.12 荷重の組合せ

[荷重 CASE]

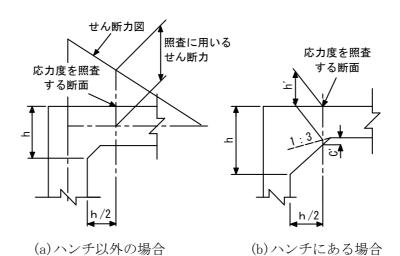
CASE 1, 3, 5, 7は、荷重がカルバート上載の場合 CASE 2, 4, 6, 8は、荷重がカルバート側載の場合 また


CASE 1, 2, 5, 6 は、土被りH1 の場合 CASE 3, 4, 7, 8 は、土被りH2 の場合 また

CASE 1, 2, 3, 4 は、地下水の影響が無い場合 CASE 5, 6, 7, 8 は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

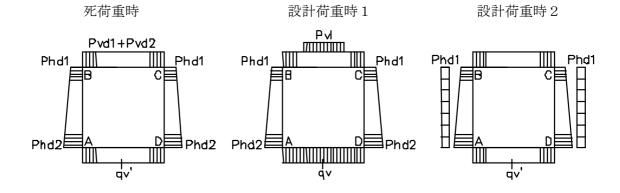
2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について


ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 Cの 1/3 まで大きくとります。

h' = T + C'/3

3 断面力の算定 (CASE-1, 2)

3.1.1 設計荷重

(1) 頂版自重	$P vd1 = \gamma c \times T 1$	
(2) 鉛直土圧	$P \text{vd2} = \alpha \times \{ \gamma \text{s} \times (\text{H1} - \text{t - t b}) + \gamma \text{a} \times \text{t} \}$	$t + \gamma b \times t b$
(3) 水平土圧	$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (Fa) \}$	H1-t-tb+T1/2)
	$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b +$	
	γ s×(H1-t-tb+T1/2+Ho)	}
(4) 載 荷 重	$Pq = Ka \times Q$	
(5) 活荷重	輪分布幅 u = a +2×H1	= 0.600 m
	$v = b + 2 \times H1$	= 0.900 m
	P1 = $0.4 \times T \times (1 + i) \times \beta$	= 130.000 kN
	$Pv1 = 2 \times P1/2.75/u$	
(6) 底版反力	$qv = Pvd1 + Pvd2 + \{Pv1 \times u + \gamma c\}$	
	$\times (2 \times T3 \times Ho + 2 \times C^2)$ \rangle Bo	

設計荷重値	死荷重時	設計荷重時 1 CASE-1	設計荷重 2 CASE-2
	(kN/m^2)	(kN/m²)	$\frac{\text{CASE 2}}{(\text{kN/m}^2)}$
Pvd1	7. 350	7. 350	7. 350
Pvd2	4.500	4.500	4.500
Phd1 = Phd1	3.600	3.600	****
Phd1 = Phd1 + Pq	****	****	8.600
Phd3 = Phd3	****	****	****
Phd3 = Phd3 + Pq	****	****	****
Phd5 = Phd5	****	****	****
Phd5 = Phd5 + Pq	****	****	****
Phd2 = Phd2	31. 500	31.500	****
Phd2 = Phd2 + Pq	****	****	36. 500
Phd4 = Phd4	****	****	****
Pvl	0.000	157. 576	0.000
q v	****	44. 350	****
q v'	22. 156	****	22. 156

注) q v'は、P v1 = 0 とした場合の底版反力

3.1.2 構造解析

(1) ラーメン係数
$$\alpha = (\text{Ho} \times \text{T1}^3)/(\text{Bo} \times \text{T3}^3)$$

 $\beta = (\text{Ho} \times \text{T2}^3)/(\text{Bo} \times \text{T3}^3)$
N1 $= 2 + \alpha$

 $\begin{array}{rcl}
N1 & = 2 + \alpha \\
N2 & = 2 + \beta
\end{array}$

(2) 荷 重 項
$$CAD = q v \times Bo^2/12$$

CBC = $\{2 \times (P vd1 + P vd2) \times B o^3 + P v1 \times u \times (3 \times B o^2 - u^2)\} / (24 \times B o)$

CAB = $(\text{Ho}^2) \times (2 \times \text{Phd1} + 3 \times \text{Phd2}) / 60$ CBA = $(\text{Ho}^2) \times (2 \times \text{Phd2} + 3 \times \text{Phd1}) / 60$

- 注1) 死荷重時、設計荷重時2のCADは、qv=qv'
- 注2) 死荷重時、設計荷重時2のCBCは、Pvl=0
- 注3) Phd1~Phd5は、水平荷重(設計荷重参照)

(3) た わ み 角
$$\theta$$
 A = $\{N1 \times (CAB - CAD) - (CBC - CBA)\}/(N1 \times N2 - 1)$
 θ B = $\{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1)$

(4) 端モーメント MAB =
$$2 \times \theta A + \theta B - CAB$$
 MAD = $\beta \times \theta A + CAD$ MBA = $2 \times \theta B + \theta A + CBA$

 $MBC = \alpha \times \theta B - CBC$

MAB + MAD = 0 MBA + MBC = 0

計	算 値	死荷重時	設計荷重時 1 CASE-1	設計荷重時 2 CASE-2
α		1. 1179	1. 1179	1. 1179
β		1. 1179	1. 1179	1. 1179
N1		3. 1179	3. 1179	3. 1179
N2		3. 1179	3. 1179	3. 1179
C AD	(kN·m/m)	33. 507	67. 070	33. 507
CBC	(kN⋅m/m)	17.921	67. 933	17. 921
C AB	(kN⋅m/m)	16. 289	16. 289	20. 293
C BA	$(kN \cdot m/m)$	11.820	11.820	15.824
<i>θ</i> A		-6. 855	-24. 589	-4. 964
θ B		4. 155	25. 884	2. 265
MAB	(kN·m/m)	-25. 844	-39. 583	-27. 957
MAD	$(kN \cdot m/m)$	25.844	39. 583	27.957
MBA	$(kN \cdot m/m)$	13. 276	38.999	15. 389
MBC	(kN·m/m)	-13. 276	-38 . 999	-15 . 389

3.1.3 各部材の断面力

- (1) 頂版
- 1) せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x$$

2) 曲げモーメント

$$\operatorname{Mmax} = (\operatorname{Pvd1} + \operatorname{Pvd2}) \times \operatorname{Bo^2} / 8 + \operatorname{Pv1} \times \operatorname{u} \times (\operatorname{Bo} / 2 - \operatorname{u} / 4) / 2 + \operatorname{MBC}$$

- (2) 底 版
- 1) せん断力

$$SXAD = qv \times Bo/2 - qv \times x$$

2) 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD$$

- (3) 側壁
- 1) せん断力

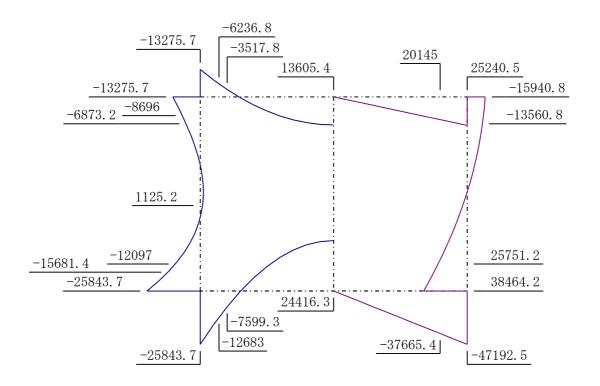
$$\begin{array}{lll} S\:XAB &=& P\:hd1 \times Ho/2 + (P\:hd2 - P\:hd1) \times Ho/3 - (MAB + MBA)/Ho\\ && - P\:hd2 \times x + (P\:hd2 - P\:hd1) \times x^2/(2 \times Ho)\\ S\:XBA &=& P\:hd1 \times Ho/2 + (P\:hd2 - P\:hd1) \times Ho/3 - (MAB + MBA)/Ho\\ && - P\:hd2 \times x + (P\:hd2 - P\:hd1) \times x^2/(2 \times Ho) \end{array}$$

2) 曲げモーメント

節点間の極値は、せん断力が0となる位置に生じる。次式を解いて位置xを求める。

$$Sx$$
 = $SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2 / (2 \times Ho)$
 $Mmax$ = $SAB \times x - Phd2 \times x^2 / 2 - (Phd1 - Phd2) \times x^3 / (6 \times Ho) + MAB$

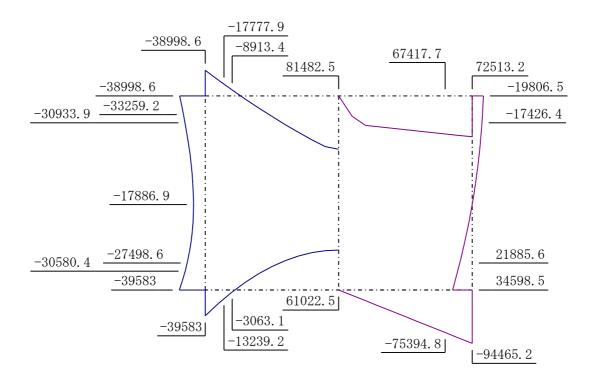
計算	値	死荷重時	設計荷重時	
			CASE-1	CASE-2
SBC	(kN/m)	25. 240	72. 513	25. 240
SCB	(kN/m)	-25. 240	-72 . 513	-25. 240
Mmax	$(kN \cdot m/m)$	13.605	81.483	11. 492
SAD	(kN/m)	47. 192	94.465	47. 192
SDA	(kN/m)	-47. 192	-94. 465	-47. 192
Mmax	$(kN \cdot m/m)$	24. 416	61.023	22. 303
S AB	(kN/m)	38. 464	34. 599	46. 214
SBA	(kN/m)	-15. 941	-19.806	-23. 691
X	(m)	1. 364	1. 364	****
		1. 570	****	1. 570
Mmax	$(kN \cdot m/m)$	1. 125	-17.887	****
Mmax	(kN·m/m)	1.528	****	5. 419


注1) 頂版 死荷重時・設計荷重時2は、Pv1 = 0 とする。

注 2) 底版 死荷重時・設計荷重時 2 は、q v = q v' とする。

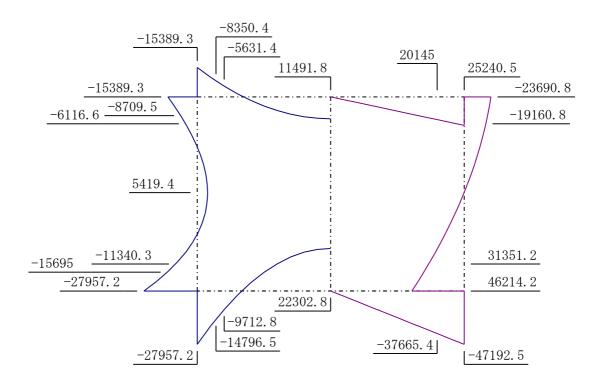
(1) 死荷重時 (CASE-1, 2)

部材	照査点	距 離 x (m)	曲げモーメント M(N·m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3,S3 端 部	0. 130	-13276	25241	15941
	2 パチ始点	0. 430	-6237	***	15941
	S2 τ 点	0. 430	-3518	20145	15941
	1 中 央	2. 130	13605	0	15941
底版	9, S9 端 部	0. 130	-25844	47193	38464
	10 /ンチ始点	0. 430	-12683	***	38464
	S10 τ 点	0. 430	-7599	37665	38464
	11 中 央	2. 130	24416	0	38464
側壁	4, S4 上 端部 5 上ννf点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下ννf点 8, S8 下 端部	2. 950 2. 650 2. 670 1. 364 1. 570 0. 430 0. 450 0. 150	-13276 -8696 -6873 1125 1528 -12097 -15681 -25844	-15941 *** -13561 ****** ***** 25751 *** 38464	25241 27365 28286 37534 36075 44148 45068 47193


曲げモーメント(N·m) せん断力(N)

(1) 設計荷重時 1 (CASE-1)

部材	照查点	距 離 x(m)	曲げモーメント M (N・m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	 3, S3 端 部	0. 130	-38999	72513	19807
頂版	2 ハンチ始点	0.430	-17778	***	19807
	S2 τ 点	0.430	-8913	67418	19807
	1 中央	2. 130	81483	0	19807
	 9,S9 端 部	0. 130	-39583	94465	34599
底版	10 ハンチ始点	0.430	-13239	***	34599
	S10 τ 点	0.430	-3063	75395	34599
	11 中 央	2. 130	61023	0	34599
	 4,S4 上 端部	2. 950	-38999	-19807	72513
	5 上ハンチ点	2.650	-33259	***	74638
	S5 上 τ点	2.670	-30934	-17426	75558
側壁	6 中 間	1.364	-17887	0	84806
	S7 下 τ 点	0.430	-27499	21886	91420
	7 下ハンチ点	0.450	-30580	***	92341
	8,S8 下 端部	0.150	-39583	34599	94465


曲げモーメント(N·m) せん断力(N)

(1) 設計荷重時 2 (CASE-2)

部材	照査点	距 離 x(m)	曲げモーメント M (N·m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0. 130	-15389	25241	23691
頂版	2 ハンチ始点	0.430	-8350	***	23691
	S2 τ 点	0.430	-5631	20145	23691
	1 中央	2. 130	11492	0	23691
	 9,S9 端 部	0. 130	 -27957	47193	46214
底版	10 ハンチ始点	0.430	-14797	***	46214
	S10 τ 点	0.430	-9713	37665	46214
	11 中 央	2. 130	22303	0	46214
	 4,S4 上 端部	2. 950	-15389	-23691	25241
	5 上ハンチ点	2.650	-8710	***	27365
	S5 上 τ点	2.670	-6117	-19161	28286
側壁	6 中 間	1.570	5419	0	36075
	S7 下 τ 点	0.430	-11340	31351	44148
	7 下ハンチ点	0.450	-15695	***	45068
	8, S8 下 端部	0.150	-27957	46214	47193

曲げモーメント(N·m) せん断力(N)

設計荷重時2

3. 断面力の算定 (CASE-3, 4)

死荷重時

3.2.1 設計荷重

(1) 頂版自重 $P vd1 = \gamma c \times T1$ (2) 鉛直土圧 $P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$ (3) 水平土圧 $Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H2 - t - t b + T1/2) \}$ $Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b +$ $\gamma s \times (H2 - t - t b + T1/2 + Ho)$ $Pq = Ka \times Q$ (4) 載荷重 (5) 活 荷 重 輪分布幅 $u = a + 2 \times H2$ = 3. 200 m = 3.500 m $v = b + 2 \times H2$ P1 = $0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ $qv = Pvd1 + Pvd2 + \{Pv1 \times u + \gamma c\}$ (6) 底版反力 $\times (2 \times T3 \times H_0 + 2 \times C^2)$ }/Bo

20円 里的	以 时间里的 1	欧山阳里的 2	
Pvd1+Pvd2 Phd1 B C Phd1 Phd2 A D Phd2 A O Phd2	Phd1 Phd1 Phd2 A D Phd2	Phd1 Phd1 Phd1 A D	
٦'	٦.	٦٠	

設計荷重時1

設計荷重値	死荷重時	設計荷重時 1 CASE-3	設計荷重時 2 CASE-4
	(kN/m²)	(kN/m²)	(kN/m²)
Pvd1	7. 350	7. 350	7. 350
Pvd2	27. 900	27. 900	27. 900
Phd1 = Phd1	15. 300	15. 300	****
Phd1 = Phd1 + I	P q *****	****	20.300
Phd3 = Phd3	****	****	****
Phd3 = Phd3 + I	P q *****	****	****
Phd5 = Phd5	****	****	****
Phd5 = Phd5 + I	P q *****	****	****
Phd2 = Phd2	43. 200	43. 200	****
Phd2 = Phd2 + I	P q *****	****	48. 200
Phd4 = Phd4	****	****	****
Pv1	0.000	26. 591	0.000
q v	****	65. 530	****
q v'	45. 556	****	45. 556

注) q v' は、P v1=0 とした場合の底版反力。

3.2.2 構造解析

(1) ラーメン係数
$$\alpha = (\text{Ho} \times \text{T1}^3)/(\text{Bo} \times \text{T3}^3)$$

 $\beta = (\text{Ho} \times \text{T2}^3)/(\text{Bo} \times \text{T3}^3)$

 $\begin{array}{rcl}
N1 & = 2 + \alpha \\
N2 & = 2 + \beta
\end{array}$

(2) 荷 重 項 $CAD = q v \times Bo^2/12$

CBC = $\{2 \times (P vd1 + P vd2) \times B o^3 + P v1 \times u \times (3 \times B o^2 - u^2)\} / (24 \times B o)$

CAB = $(Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60$ CBA = $(Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$

注1) 死荷重時、設計荷重時2のCADは、qv=qv'

注2) 死荷重時、設計荷重時2のCBCは、Pvl=0

注3) Phd1~Phd5は、水平荷重(設計荷重参照)

(3) たわみ角 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}/(N1 \times N2 - 1)$ $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1)$

(4) 端モーメント MAB = $2 \times \theta A + \theta B - CAB$

 $MAD = \beta \times \theta A + CAD$

 $MBA = 2 \times \theta B + \theta A + CBA$

 $MBC = \alpha \times \theta B - CBC$

MAB + MAD = 0 MBA + MBC = 0

計算値	死荷重時	設計荷重時 1 CASE-3	設計荷重時 2 CASE-4
α	1. 1179	1. 1179	1. 1179
β	1. 1179	1. 1179	1. 1179
N1	3. 1179	3. 1179	3. 1179
N2	3. 1179	3. 1179	3. 1179
CAD (kN·m/m)	68. 894	99. 102	68. 894
CBC (kN·m/m)	53. 309	90.097	53. 309
CAB (kN·m/m)	25.659	25.659	29.663
CBA (kN·m/m)	21. 190	21. 190	25. 194
<i>θ</i> A	-19. 140	-34. 157	-17. 249
θ B	16. 440	33. 056	14. 549
MAB (kN·m/m)	-47. 498	-60. 918	-49. 612
MAD (kN·m/m)	47. 498	60.918	49.612
MBA (kN·m/m)	34. 930	53. 144	37.044
MBC (kN·m/m)	-34. 930	-53. 144	-37. 044

3.2.3 各部材の断面力

- (1) 頂 版
- 1) せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x$$

2) 曲げモーメント $Mmax = (Pvd1 + Pvd2) \times Bo^2/8 + Pv1 \times u \times (Bo/2 - u/4)/2 + MBC$

- (2) 底版
- 1) せん断力

$$SXAD = qv \times Bo/2 - qv \times x$$

2) 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD$$

- (3) 側壁
- 1) せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3 - (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3 - (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

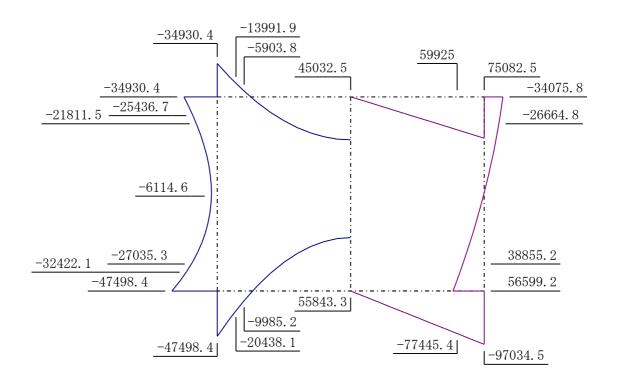
2) 曲げモーメント

節点間の極値は、せん断力が0となる位置に生じる。次式を解いて位置xを求める。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2 / (2 \times Ho)$$

$$Mmax = SAB \times x - Phd2 \times x^2 / 2 - (Phd1 - Phd2) \times x^3 / (6 \times Ho) + MAB$$

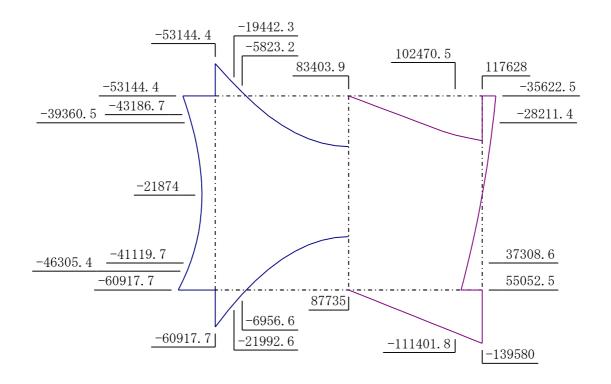
計算值	死荷重時	設計荷重時 1 CASE-3	設計荷重時 2 CASE-4
SBC (kN/m)	75. 082	117. 628	75. 082
SCB (kN/m)	-75.082	-117.628	-75.082
$Mmax (kN \cdot m/m)$	45.032	83. 404	42. 919
SAD (kN/m)	97.034	139. 580	97. 034
SDA (kN/m)	-97.034	-139. 580	-97.034
$Mmax (kN \cdot m/m)$	55.843	87. 735	53. 730
SAB (kN/m)	56. 599	55.053	64. 349
SBA (kN/m)	-34.076	-35.622	-41.826
\mathbf{x} (m)	1.513	1. 513	****
	1.563	****	1. 563
$Mmax (kN \cdot m/m)$	-6. 115	-21.874	****
Mmax (kN⋅m/m)	-6. 074	****	-2. 182


注1) 頂版 死荷重時・設計荷重時2は、Pvl = 0 とする。

注2) 底版 死荷重時・設計荷重時2は、qv = qv'とする。

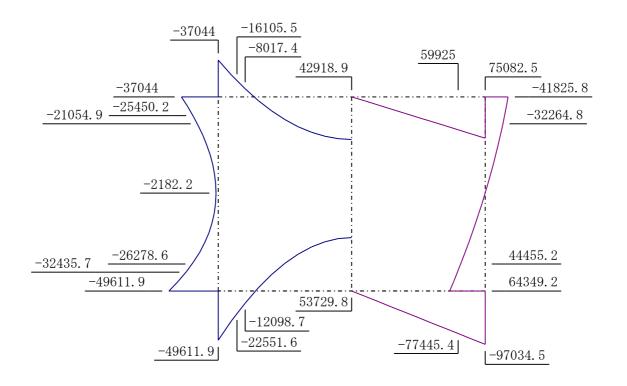
(1) 死荷重時 (CASE-3, 4)

部材	照査点	距離 x(m)	曲げモーメント M (N・m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0. 130	-34930	75083	34076
頂版	2 ハンチ始点	0.430	-13992	***	34076
	S2 τ 点	0.430	-5904	59925	34076
	1 中央	2. 130	45033	0	34076
	 9,S9 端 部	0. 130	-47498	97035	56599
底版	10 ハンチ始点	0.430	-20438	***	56599
	S10 τ 点	0.430	-9985	77445	56599
	11 中 央	2. 130	55843	0	56599
	 4,S4 上 端部	2. 950	-34930	-34076	75083
	5 上ハンチ点	2.650	-25437	***	77207
	S5 上 τ点	2.670	-21812	-26665	78128
側壁	6 中間	1.513	-6115	*****	86321
		1.563	-6075	*****	85966
	S7 下 τ 点	0.430	-27035	38855	93990
	7 下ハンチ点	0.450	-32422	***	94910
	8,S8 下 端部	0.150	-47498	56599	97035


曲げモーメント(N·m) せん断力(N)

(2) 設計荷重時 1 (CASE-3)

部材	照查点	距 離 x(m)	曲げモーメント M (N·m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	3,S3 端 部	0. 130	-53144	117628	35623
頂版	2 ハンチ始点	0.430	-19442	***	35623
	S2 τ 点	0.430	***	102471	***
	1 中央	2. 130	83404	0	35623
	 9,S9 端 部	0. 130	-60918	139580	55053
底版	10 ハンチ始点	0.430	-21993	***	55053
	S10 τ 点	0.430	***	111402	***
	11 中 央	2. 130	87735	0	55053
	 4,S4 上 端部	2. 950	-53144	-35623	117628
	5 上ハンチ点	2.650	-43187	***	119752
	S5 上 τ点	2.670	***	-28211	***
側壁	6 中 間	1.513	-21874	0	128866
	S7 下 τ 点	0.430	***	37309	***
	7 下ハンチ点	0.450	-46305	***	137456
	8,S8 下 端部	0.150	-60918	55053	139580


曲げモーメント(N·m) せん断力(N)

(3) 設計荷重時 2 (CASE-4)

部材	照査点	距離 x(m)	曲げモーメント M (N・m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	 3, S3 端 部	0. 130	-37044	75083	41826
頂版	2 ハンチ始点	0.430	-16106	***	41826
	S2 τ 点	0.430	***	59925	***
	1 中央	2. 130	42919	0	41826
	 9,S9 端 部	0. 130	-49612	97035	64349
底版	10 パチ始点	0.430	-22552	***	64349
	S10 τ 点	0.430	***	77445	***
	11 中 央	2. 130	53730	0	64349
	 4,S4 上 端部	2. 950	-37044	-41826	75083
	5 上ハンチ点	2.650	-25450	***	77207
	S5 上 τ点	2.670	***	-32265	***
側壁	6 中間	1.563	-2182	0	85966
	S7 下 τ 点	0.430	***	44455	*****
	7 下ハンチ点	0.450	-32436	***	94910
	8,S8 下 端部	0.150	-49612	64349	97035

曲げモーメント(N·m) せん断力(N)

 (N/mm^2)

4 プレストレスの計算

4.1 荷重による曲げ応力度

 $\sigma\,\text{m}\,=\,\pm M/Z\,=\,\pm 6\,\times\,M/(\,b\times\,T^2)\,\times\,1000$

 ここに、
 σ m : 曲げ応力度
 (N/mm²)

 M : 曲げモーメント
 (kN・m)

 Z : 断面係数
 (cm³)

 B : 部材幅
 (cm)

 T : 部材厚
 (cm)

4.2 有効プレトレス

(1) 有効係数 η

$$\eta = \sigma \operatorname{pe} / \sigma \operatorname{pt}$$

$$\sigma \operatorname{pt} = \operatorname{Pt} / \operatorname{Ap} \times 1/100$$

$$\sigma \operatorname{pe} = \sigma \operatorname{pt} - \triangle \sigma \operatorname{pcs} - \triangle \sigma \operatorname{pr}$$

$$\triangle \sigma \operatorname{pcs} = [\operatorname{n} \times \phi \times (\sigma \operatorname{cd} + \sigma \operatorname{cpt}) + \operatorname{Ep} \times \varepsilon \operatorname{cs}] / [1 + \operatorname{n} \times (\sigma \operatorname{cpt} / \sigma \operatorname{pt}) \times (1 + \phi / 2)]$$

$$\sigma \operatorname{cpt} = \operatorname{Np} \times \operatorname{Pt} \times (1 / \operatorname{Ac} + \operatorname{ep}^2 / 1) \times 10$$

$$\triangle \sigma \operatorname{pr} = \gamma \times \sigma \operatorname{pt}$$

ここに、 σpt : 有効引張応力度 (N/mm²) Pt : 緊張作業直後のPC鋼棒引張応力度 (kN)

Ap :1本当りのPC鋼棒断面積 (cm²)

 $\triangle \sigma pcs$: コンクリートの乾燥収縮及びクリープ による P C 鋼棒の応力度の減少量

n : 弾性係数比 (Ep / Ec = 6.45)

Ep : PC鋼棒の弾性係数 $(2.0 \times 10^5 \text{ N/mm}^2)$ Ec : コンクリートの弾性係数 $(3.1 \times 10^4 \text{ N/mm}^2)$

 ϕ : クリープ係数 (= 2.5)

σcd : 考えている P C 鋼棒位置における永久

荷重によるコンクリートの圧縮応力度 (N/mm²)

σ cpt : 考えている P C 鋼棒位置における緊張

作業直後のプレストレス (N/mm^2)

 ϵcs : コンクリートの乾燥収縮度(= 200 μ)

 σ pt
 : 緊張作業直後の P C 鋼棒の引張応力度
 (N/mm²)

 Np
 : m当り PC 鋼棒本数
 (本)

 Ac
 : コンクリート断面積
 (cm²)

 ep
 : P C 鋼棒偏心量
 (cm)

 I
 : 断面二次モーメント
 (cm⁴)

△ σ pr : P C 鋼棒のリラクセーションによる

引張応力度の減少量 (N/mm²)

 γ : PC鋼棒の見掛けのリラクセーション(= 0.03)

(2) 有効プレストレス σce

 $\sigma ce = Np \times Pt \times \eta \times (1 / Ac \pm ep / Z) \times 10$ (N/mm²)

ここに、 Np : m当りPC鋼棒本数 (本)

Pt : 引張作業直後 (kN)

η : 有効係数

 Ac
 : コンクリート断面積
 (cm²)

 ep
 : PC鋼棒偏心量
 (cm)

 Z
 : 断面係数
 (cm³)

4.3 合成応力度

 $\sigma c = \sigma m + \sigma ce + N / Ac \times 10$

 ここに、σc : 合成応力度 (N/mm²)

 σm : 曲げ応力度 (N/mm²)

 σce : 有効プレストレス (N/mm²)

 N : 軸方向圧縮力 (kN)

 Ac : コンクリート断面積 (cm²)

4.4 引張鉄筋量の計算

(1) 曲げモーメント

引張鉄筋は次の荷重作用に対して、引張応力の作用する区間に配置する。

荷重の組み合わせ (永久荷重 + 変動荷重) × 1.35

(2) 配置鉄筋量

配置鉄筋量は次の1)、2)のうちいずれか大きい値以上とする。

1) の値

 $As1 = Tc / \sigma sa \times 10$ $= b \times x \times | \sigma c1 | / (2 \times \sigma sa)$ $\therefore x = | \sigma c1 | / (\sigma c2 + | \sigma c1 |) \times T$

2) の値

 $As2 = 0.005 \times b \times x$

 ここに、 As1 : 引張鉄筋断面積
 (cm²)

 As2 : 引張鉄筋断面積
 (cm²)

引張応力の作用する

コンクリート面積の 0.5%

Tc : 断面に生じる引張力の合力 (kN) σ sa : 鉄筋の許容引張応力度 (N/mm²) σ c1 : 引張縁に生じる引張応力度 (N/mm²) σ c2 : 圧縮縁に生じる圧縮応力度 (N/mm²)

b : 部材幅 (cm) x : 引張縁から中立軸までの距離 (cm) T : 部材厚 (cm)

(cm)

4.5 斜引張応力度の計算

斜引張応力度は次式を用いて、断面図心位置における値を求める。

T : 部材厚

$$\sigma$$
 i = 1 / 2 × $[\sigma$ x - $\sqrt{(\sigma x^2 + 4 \times \tau^2)}]$
 σ x = $[Pe / Ac + N / Ac] \times 10$
 τ = S × G / (b × I) × 10
I = b × T³ / 12
G = b × T² / 8

ここに、 σ i : 斜引張応力度
 σ x : 部材軸方向圧縮応力度
 τ : せん断応力度
Pe : m当り全有効引張力
(kN)
S : せん断力
G : 断面一次モーメント
b : 部材幅
I : 断面二次モーメント
(cm³)

4.6 破壊安全度の検討

(1) 曲げモーメント

1) 安全係数

破壊に対する安全度の検討に使用する安全係数を次のように定める。

材料強度に関するもの ----- 1.0 荷重作用に関するもの (永久荷重作用) ---- 1.3 または 1.7 (変動荷重作用) ---- 2.5 または 1.7

2) 終局荷重作用時の曲げモーメント

終局荷重作用時の曲げモーメントは、次に示す荷重作用の大きい方とする。

$$Md = 1.3 \times M1 + 2.5 \times M2$$
 (kN·m)
 $Md = 1.7 \times M1 + 1.7 \times M2$ (kN·m)

ここに、 Md : 終局荷重作用時曲げモーメント

M1 : 永久荷重による曲げモーメントM2 : 変動荷重による曲げモーメント

(設計荷重時 - 死荷重時)

(2) 曲げ破壊安全度

$$Sf = Mu / Md > 1.0$$

$$\begin{aligned} \text{Mu} &= 0.7 \times (0.93 \times \text{Ap} \times \sigma \, \text{pud} \times \text{dp}) \\ &\times \left[1 - \text{Ap} / (1.7 \times \text{b} \times \text{dp}) \right. \\ &\times 0.93 \times \sigma \, \text{pud} / \sigma \, \text{ck} \right] \times 1/1000 \\ &+ \text{As} \times \sigma \, \text{syd} \times \text{ds} \times \left[1 - \text{As} / (1.7 \times \text{b} \times \text{ds}) \right. \\ &\times \sigma \, \text{syd} / \sigma \, \text{ck} \right] \times 1/1000 \end{aligned}$$

ここに、 Mu : 破壊抵抗曲げモーメント $(kN \cdot m)$ Ap : PC鋼棒断面積 (cm^2) As : 鉄筋の断面積 (cm^2) σ pud : P C 鋼棒引張強度 (N/mm^2) σ syd : 引張鉄筋の降伏点応力度 (N/mm^2) : コンクリートの設計基準強度 (N/mm^2) σck dp: 圧縮縁からPC鋼棒図心迄の距離 (cm) ds : 圧縮縁から鉄筋図心迄の距離 (cm) b :部材幅 (cm) Sf : 曲げ破壊安全度

終局つり合い鋼材比が配置される引張鋼材比より大であることを確認する。

$$P pb = 0.68 \times \epsilon cu / (\epsilon cu + \epsilon sp) \\ \times \sigma ck / (0.93 \times \sigma pud) + \\ 0.68 \times \epsilon cu / (\epsilon cu + \epsilon s) \\ \times \sigma ck / \sigma syd$$

$$P pd = Ap / (b \times dp) + As / (b \times ds) \\ \times \sigma syd / (0.93 \times \sigma pud) \times ds / dp < P pb$$

ここに、 Ppb : 終局つり合い鋼材比

Ppd : 引張鋼材比

 ϵ cu : コンクリートの終局ひずみ (0.0035) ϵ sp : P C 鋼棒の終局ひずみ (0.015) σ pud : P C 鋼棒の引張強さ (N/mm²) ϵ s : 引張鉄筋の降伏ひずみ (σ syd/Es)

5 PC部材の検討

5.1 頂版

5.1.1 断面諸元

位	置	部材幅	部材厚	断面積	断面二次モーメント	中立軸	断面係数
		(cm)	(cm)	(cm^2)	(cm^4)	(cm)	(cm^3)
端	部	100.00	40.00	4000.0	533333. 33	20.00	26666.67
ハンチュ	始点	100.00	30.00	3000.0	225000.00	15.00	15000.00
τ	点	100.00	30.00	3000.0	225000.00	15.00	15000.00
中	央	100.00	30.00	3000.0	225000.00	15.00	15000.00

5.1.2 使用PC鋼棒

位 置	径	本数	断面積	設計引張力	偏心量	モーメント方向
		(本/m)	(cm^2)	(N/本)	(cm)	(部材軸より)
端部	φ 23	3. 00	4. 155	345000	2.50	外側
ハンチ始点	ϕ 23	3.00	4. 155	345000	-2.50	外 側
τ 点	ϕ 23	3.00	4. 155	345000	-2.50	外 側
中 央	ϕ 23	3.00	4. 155	345000	2.50	内 側

5.1.3 有効係数

計算	項/	σ pt	σcpt	σ cd	$\triangle \sigma pcs$	$\triangle \sigma$ pr	σpe	有効係数	ケース
位	置				(N/mm^2)				
(1)	死	苛重時 ((最大圧縮)						
端	部	830. 32	2. 71	-0.16	77. 39	24. 91	728. 03	0.877	3
ハンチ	始点	830.32	3. 74	0.16	96.49	24.91	708.93	0.854	3
τ	点	830.32	3. 74	0.07	95. 12	24.91	710.29	0.855	3
中	央	830.32	3. 74	-0.50	86. 56	24. 91	718.86	0.866	3
(2)	死	苛重時 ((最大引張)						
端	部	830.32	2.71	-0.16	77. 39	24.91	728.03	0.877	3
ハンチ	始点	830.32	3. 74	0.16	96.49	24.91	708.93	0.854	3
τ	点	830.32	3. 74	0.07	95. 12	24.91	710.29	0.855	3
中	央	830.32	3. 74	-0.50	86. 56	24. 91	718.86	0.866	3
(3)	設計	·荷重時	(最大圧縮)						
端	部	830.32	2.71	-0.16	77. 38	24. 91	728.03	0.877	3
ハンチ	始点	830.32	3. 74	0.16	96.49	24.91	708.93	0.854	3
τ	点	830.32	3. 74	0.04	94.72	24.91	710.69	0.856	1
中	央	830.32	3. 74	-0.50	86. 56	24.91	718.86	0.866	3
(4)	設計	·荷重時	(最大引張)						
端	部	830.32	2.71	-0. 16	77. 38	24. 91	728.03	0.877	3
ハンチ	始点	830.32	3. 74	0.16	96.49	24.91	708.93	0.854	3
τ	点	830.32	3. 74	0.04	94. 72	24.91	710.69	0.856	1
中	央	830. 32	3. 74	-0.50	86. 56	24. 91	718.86	0.866	3

5.1.4 合成応力度

位	置	曲げ応力度	N/Ac	有効プレストレス	合成応力度	ケース
		σ m		σсе	σс	
		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	
(1)) 死	花 (最大圧縮)				
端	部	1.31	0.09	1.42	2.81	3
ハンチを	始点	0.93	0.11	4. 42	5.46	3
中	央	3.00	0.11	1.49	4.61	3
				$\sigma c < 15.0$	CHECK	OK
(2)) 死	E荷重時 (最大引張)				
端	部	-1.31	0.09	3. 12	1.89	3
ハンチ	始点	-0.93	0.11	1. 47	0.65	3
中	央	-3.00	0.11	4.48	1.59	3
				σt > 0.0	CHECK	OK
(0)	\ <u> </u>	131 # * 14 15 15 15 15 15 15 15				
(3)		計荷重時 (最大圧縮)	0.00	1 40	0. 50	
端	部	1. 99	0.09	1. 42	3. 50	3
ハンチタ		1. 30	0. 12	4. 42	5. 83	3
中	央	5. 56	0. 12	1.49	7. 17	3
				$\sigma c < 15.0$	CHECK	OK
(4))設	計荷重時 (最大引張)				
端	部	-1.99	0.09	3. 12	1. 22	3
ハンチを	始点	-1.30	0.12	1.47	0.30	3
中	央	-5. 56	0.12	4.48	-0.96	3
				σt > -1.5	CHECK	OK

5.1.5 引張鉄筋量

位 置	曲げモーメント	合成応	力度	X	Тс	引張鈞	:筋量	ケース
		外側	内側			As1	As2	
	$(kN \cdot m/m)$	(N/m)	\mathbf{m}^2)	(cm)	(kN)	(cm^2)	/m)	
端部	-71. 745	0.55	4. 23	4.6	0.0	0.000	0.000	3
ハンチ始点	-26. 247 −26. 247	-0.12	6.33	0.5	0.3	0.020	0.272	3
中 失	t 112.595	-2.87	9. 16	7. 1	102.4	6.402	3.574	3

----- 使用鉄筋及び鉄筋量 -----

	径	本数	径	本数	断面積		判定	
外 側	D 13 —	6	D 0 —	- 0	$7.602 \text{ cm}^2/\text{m}$	>	Asl or	As2
内 側	D 13 —	6	D 0 —	- 0	$7.602 \text{ cm}^2/\text{m}$	>	Asl or	As2

5.1.6 斜引張応力度

位	置	部材幅	断面一次	軸力	せん断力	Ре	σс'	τ	σi	ケース
		(cm)	モーメント (cm³)	(kN)	(kN)	(kN)		(N/mm^2)		
端	部	100.0	20000	35. 623	117.628	907.49	2.36	0.44	-0.080	3
τ	点	100.0	11250	35.623	102.471	885.38	3.07	0.51	-0.083	3
		•		•		σi	> -1.	00	CHECK (OK

5.1.7 破壊安全度の検討

終局荷重時の曲げモーメント

位	置	M1	M2	1. 3M1+2. 5M2	1.7 (M1+M2)	Md	ケース
		$(kN \cdot m)$					
端	部	-34. 930	-18. 214	-90. 945	-90. 345	-90. 945	3
ハンチな	始点	-6. 237	-11. 541	-36. 961	-30. 222	-36. 961	1
中	央	13.605	67.877	187. 380	138. 520	187. 380	1

位	置	Аp	As	dр	d s	Ppb	Ppd	Mu	Sf	ケース
		(cm^2/m)	(cm^2/m)	(cm)	(cm)			$(kN \cdot m)$		
端	部	12.465	7. 602	22.5	36. 5	0.069	0.006	284. 76	3. 1	3
ハンチな	始点	12.465	7.602	12.5	26.5	0.069	0.012	162. 52	4.4	1
中	央	12.465	7.602	17.5	26.5	0.069	0.008	212.43	1. 1	1

Ppb > Ppd Sf > 1.0 CHECK OK

5.2 底版

5.2.1 断面諸元

位	置	部材幅	部材厚	断面積	断面二次モーメント	中立軸	断面係数
		(cm)	(cm)	(cm^2)	(cm^4)	(cm)	(cm^3)
端	部	100.00	40.00	4000.0	533333. 33	20.00	26666.67
ハンチュ	始点	100.00	30.00	3000.0	225000.00	15.00	15000.00
τ	点	100.00	30.00	3000.0	225000.00	15.00	15000.00
中	央	100.00	30.00	3000.0	225000.00	15.00	15000.00

5.2.2 使用PC鋼棒

位置	径	本数	断面積	設計引張力	偏心量	モーメント方向
		(本/m)	(cm^2)	(N/本)	(cm)	(部材軸より)
端部	φ 23	3. 00	4. 155	345000	2.50	外側
ハンチ始点	ϕ 23	3.00	4. 155	345000	-2.50	外側
τ 点	ϕ 23	3.00	4. 155	345000	-2.50	外側
中央	ϕ 23	3.00	4. 155	345000	2.50	内 側

5.2.3 有効係数

計算	項/	σ pt	σcpt	σ cd	$\triangle \sigma pcs$	$\triangle \sigma pr$	σpe	有効係数	ケース
位	置				(N/mm^2)				
(1)	死荷	前重時 (z	最大圧縮)						
端	部	830.32	2.71	-0.22	76.48	24. 91	728.94	0.878	3
ハンチュ	始点	830.32	3. 74	0.23	97. 57	24.91	707.85	0.852	3
τ	点	830.32	3. 74	0.11	95.81	24.91	709.60	0.855	3
中	央	830.32	3. 74	-0.62	84. 74	24. 91	720.68	0.868	3
(2)	死荷	前重時 (z	最大引張)						
端	部	830.32	2.71	-0.22	76.48	24.91	728.94	0.878	3
ハンチュ	始点	830.32	3. 74	0.23	97. 57	24.91	707.85	0.852	3
τ	点	830.32	3. 74	0.11	95.81	24.91	709.60	0.855	3
中	央	830.32	3. 74	-0.62	84. 74	24. 91	720.68	0.868	3
(3)	設計	荷重時	(最大圧縮)						
端	部	830.32	2.71	-0.22	76.48	24.91	728.94	0.878	3
ハンチュ	始点	830.32	3. 74	0.23	97. 57	24.91	707.85	0.852	4
τ	点	830.32	3. 74	0.11	95.81	24.91	709.60	0.855	4
中	央	830.32	3. 74	-0.62	84.74	24. 91	720.68	0.868	3
(4)	設計	荷重時	(最大引張)						
端	部	830.32	2.71	-0.22	76.48	24.91	728.94	0.878	3
ハンチュ	始点	830.32	3.74	0.23	97.57	24.91	707.85	0.852	4
τ	点	830.32	3. 74	0.11	95.81	24.91	709.60	0.855	4
中	央	830.32	3. 74	-0.62	84.74	24. 91	720.68	0.868	3

5.2.4 合成応力度

位	置	曲げ応力度	N/Ac	有効プレストレス	合成応力度	ケース
		σ m		σсе	σс	
		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	
(1)) 死	花荷重時 (最大圧縮)				
端	部	1.78	0. 14	1.42	3. 34	3
ハンチな	始点	1. 36	0.19	4.41	5.96	3
中	央	3.72	0. 19	1. 50	5. 41	3
				σ c < 15.0	CHECK	OK
(2)) 死	正荷重時 (最大引張) 				
端	部	-1.78	0. 14	3. 12	1.48	3
ハンチな	始点	-1.36	0. 19	1.47	0.30	3
中	央	-3.72	0. 19	4. 49	0.96	3
				σt > 0.0	CHECK	OK
(3))設	計荷重時 (最大圧縮)				
媏	部	2.28	0.14	1.42	3.84	3
ハンチな	始点	1.50	0.21	4. 41	6. 13	4
中	央	5.85	0. 18	1. 50	7. 53	3
				$\sigma c < 15.0$	CHECK	OK
(4))設	計荷重時 (最大引張)				
端	部	-2.28	0.14	3. 12	0.98	3
ハンチな	始点	-1.50	0.21	1.47	0.18	4
中	央	-5.85	0.18	4. 49	-1.17	3
				σt > -1.5	СНЕСК	OK

5.2.5 引張鉄筋量

位	置	曲げモーメント	合成応	力度	X	Тс	引張鈞	ķ筋量	ケース
			外側	内側			As1	As2	
		$(kN \cdot m/m)$	(N/m)	\mathbf{m}^2)	(cm)	(kN)	$(cm^2$	/m)	
端	部	-82. 239	0.23	4. 69	1.8	0.0	0.000	0.000	3
ハンチ	始点	-30. 445	-0.27	6.73	1.2	1.6	0.097	0.578	4
中	央	118.442	-3. 16	9.64	7.4	116.8	7.300	3.700	3

----- 使用鉄筋及び鉄筋量 -----

	径	本数	径	本数	断面積		判定	
外 側	D 13 —	6	D 0 —	- 0	$7.602 \text{ cm}^2/\text{m}$	>	Asl or	As2
内 側	D 13 —	6	D 0 —	- 0	$7.602 \text{ cm}^2/\text{m}$	>	Asl or	As2

5.2.6 斜引張応力度

位	置	部材幅	断面一次	軸力	せん断力	Ре	σс'	τ	σi	ケース
		(cm)	モーメント (cm³)	(kN)	(kN)	(kN)		(N/mm^2)		
端	部	100.0	20000	55. 053	139. 580	908.62	2.41	0.52	-0.109	3
τ	点	100.0	11250	55.053	111.402	884.52	3. 13	0.56	-0.096	3
						σi	> -1.	00	CHECK (OK

5.2.7 破壊安全度の検討

終局荷重時の曲げモーメント

位	置	M1	M2	1. 3M1+2. 5M2	1.7 (M1+M2)	Md	ケース
		$(kN \cdot m)$					
端	部	-47. 498	-13. 419	-95. 296	-103.560	-103. 560	3
ハンチュ	始点	-20. 438	-2.114	-31.853	-38.338	-38. 338	4
中	央	55.843	31.892	152. 326	149. 149	152. 326	3

位	置	Аp	As	dр	d s	Ppb	Ppd	Mu	Sf	ケース
		(cm^2/m)	(cm^2/m)	(cm)	(cm)			$(kN \cdot m)$		
端	部	12.465	7.602	22.5	36. 5	0.069	0.006	284. 76	2.7	3
ハンチュ	始点	12.465	7.602	12.5	26. 5	0.069	0.012	162. 52	4.2	4
中	央	12.465	7.602	17.5	26. 5	0.069	0.008	212.43	1.4	3

Ppb > Ppd Sf > 1.0 CHECK OK

6 断面力集計表

各ケースより断面力の最大値を抽出する。

 M : 部材モーメント
 (kN·m)

 S : せん断力
 (kN)

 N : 軸力
 (kN)

 e : M/N偏心位量
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 Ms : 軸力を考慮した曲げモーメント
 (kN·m)

 $Ms = N \times (e + c) / 100$ (kN·m)

但し、軸力は

頂版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	M	N	е	С	Ms	CASE
		$(kN \cdot m)$	(kN)	(cm)	(cm)	$(kN \cdot m)$	M
	端部	*****	*****	*****	*****	*****	**
頂版	ハンチ始点	*****	*****	*****	*****	*****	**
	中 央	*****	*****	*****	*****	*****	**
	端部	*****	*****	*****	****	*****	**
底版	かが始点	*****	*****	*****	*****	*****	**
	中 央	*****	*****	****	*****	*****	**
	上端部	-53. 144	117. 628	45. 18	14. 50	70. 200	3
	上ハンチ点	-43. 187	119. 752	36.06	9. 50	54. 563	3
側壁	中間	-17. 887	84. 806	21. 09	9. 50	25. 943	1
	下ハンチ点	-46. 305	137. 456	33. 69	9.50	59. 364	3
	下端部	-60. 918	139. 580	43.64	14.50	81. 157	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

注2) ***** 表示は、PC部材。

7 必要有効高および必要鉄筋量

7.1 必要有効高

 ここに、 Ms : 軸力を考慮した曲げモーメント
 (kN·m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

7.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σ sa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

部材	点	Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
	端部	*****	****	*****	****	*****
頂版	ハンチ始点	*****	*****	*****	*****	*****
	中 央	*****	*****	*****	*****	*****
	端部	*****	****	*****	*****	*****
底版	心チ始点	******	*****	*****	*****	*****
	中 央	*****	*****	*****	*****	*****
	上端部	70. 200	14. 76	18. 26	36.00	7. 702
	上ハンチ点	54. 563	13. 01	16. 51	26. 00	9. 864
側壁	中間	25.943	8.97	12.47	26.00	2.638
	下心チ点	59. 364	13. 58	17. 08	26. 00	10. 378
	下端部	81. 157	15.87	19. 37	36.00	8.809

- 28 -

d + d' < T CHECK OK

8 配筋及び実応力度

実応力度は、次式により計算する。

8.1 コンクリート及び鉄筋

$$\sigma c = N/\{b \times x/2 - n \times As/x \times (c + T/2 - x)\}$$

$$\sigma s = n \times \sigma c/x \times (c + T/2 - x)$$

 ここに、N:軸力
 (kN)

 b:部材幅
 (cm)

 T:部材厚
 (cm)

 c:部材中心軸と鉄筋間距離
 (cm)

 As:主鉄筋断面積
 (cm²)

 x:中心軸。次の3次元方程式より求める。
 (cm)

 x³-3 × (T/2-e)×x²
 +6×n×As/b×(e+c)×x

 $+6 \times n \times As/b \times (e+c) \times x$ $-6 \times n \times As/b \times (c+T/2)$ $\times (e+c) = 0$

e : 偏心位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実	芯力度(N/m	m ²)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σs'
	端部	*****	*****	*****	*****	*****	*****
頂版	ハンチ始点	****	*****	*****	*****	*****	*****
	中 央	****	*****	****	*****	****	****
	端部	*****	*****	*****	*****	*****	*****
底版	ハンチ始点	****	*****	*****	*****	*****	*****
	中 央	****	*****	****	*****	****	*****
	上端部	100.00	11. 916	11.884	4. 14	107.7	0.0
	上ハンチ点	100.00	11.916	9. 132	6.14	134. 9	0.0
側壁	中間	100.00	11.916	10.588	2.58	43.6	0.0
	下ハンチ点	100.00	11.916	9. 269	6.60	141.3	0.0
	下端部	100.00	11. 916	11.992	4. 75	121.8	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

9 せん断力に対する検討

9.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	67. 418	20. 145	102. 471	59. 925				
頂版	M			-5.823					
τ点	N			35. 623					
	最大			0					
	S	75. 395	37. 665	111. 402	77. 445				
底版	M			-6. 957					
τ点	N			55. 053					
	最大			0					
	S	-17. 426	-19. 161	-28. 211	-32. 265				
側壁上	M				-21.055				
τ点	N				78. 127				
•	最大				0				
側壁下	S	21.886	31. 351	37. 309	44. 455				
	M				-26. 279				
τ点	N				93. 990				
	最大				0				

ここに、S: せん断力(kN)、M:モーメント(kN・m)、N: 軸力(kN)を示す。

9.2 せん断応力度の検討

コンクリートのせん断応力度は、平均せん断応力度として算出する。

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτa に乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1.0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) を τ a に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和を b d で除して求める。

引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
補正係数(Cpt)	0.7	0.9	1.0	1. 2	1. 5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数 (CN) を τ a に乗じる。

CN = 1 + Mo/M $Mo = \{(Pe+N) \cdot Z/Ac + Pe \cdot ep\}$ $tilde{E} \subseteq 2$

ここに、CN:軸方向力による補正係数

Mo: 有効プレストレス力及び軸方向力によりコンクリートの応力度が引張縁で

0となる曲げモーメント(kN・m)

M: 断面に作用する曲げモーメント(kN・m)

N:断面に作用する軸方向圧縮力(kN)

Pe: PC鋼棒に作用するm当りの全有効引張力(kN)

Z:図心軸に関する断面係数(m3)

Ac: 部材断面積(m2)

ep: PC鋼棒の偏心量<引張縁側+/圧縮縁側->(m)

照査位置	Т	ď	d	Се	引張	姜鉄筋	Pt	Cpt
	(cm)	(cm)	(cm)		径-本数	As(cm2)	(%)	
頂版 τ 点	30.0	3. 5	26. 5	1.400	D13-6	7. 602	0. 287	0.987
底版 τ 点	30.0	3. 5	26. 5	1.400	D13-6	7. 602	0. 287	0.987
側壁上 τ 点	26. 7	3.5	23. 2	1.400	D16-6	11. 916	0.514	1. 208
側壁下 τ 点	26. 7	3. 5	23. 2	1.400	D16-6	11. 916	0.514	1. 208

照査位置	M	Ре	N	Ac	Z	ер	Мо	Cn
	(kN • m)	(kN)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版 τ 点	-5.823	885.4	35. 622	0.300	0.01500	-0.03	28. 343	2.000
底版 τ 点	-6. 957	884. 5	55. 052	0.300	0.01500	-0.03	29. 288	2.000
側壁上τ点	-21.055	0.0	78. 128	0. 267	0.01190	0.00	3. 482	1. 165
側壁下τ点	-26. 279	0.0	93. 990	0. 267	0.01190	0.00	4. 189	1. 159

照査位置	τα		補正		
		Се	Cpt	Cn	τа
頂版τ点	0. 270	1.400	0. 987	2.000	0. 746
底版 τ 点	0. 270	1.400	0. 987	2.000	0. 746
側壁上 τ 点	0.270	1.400	1. 208	1. 165	0. 532
側壁下 τ 点	0.270	1.400	1. 208	1.159	0.529

照査位置	せん断力	有効高	せん断応力度	補正
	S	d	τ	τа
	(kN)	(cm)	(N/mm2)	(N/mm2)
頂版 τ 点	102. 470	26. 5	0. 387	0.746
底版 τ 点	111. 402	26. 5	0. 420	0.746
側壁上τ点	32. 265	23. 2	0. 139	0. 532
側壁下τ点	44. 455	23. 2	0. 192	0. 529

 $\tau < \tau$ a CHECK OK

以上