受付 No. 台帳 No. KS404003

		プ	ν	牛	ヤ	ス	7		
		P (こボッ	クス	、カノ	レバ	—		
		設	計	計	•	算	書		
_	П							_	

○内空寸法: 内 幅(B) 5000 mm

内 高 (H) 2500 mm 長 さ (L) 1000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 1.510 m H2= 3.000 m

千 葉 窯 業 株 式 会 社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) 5000 × (H) 2500 × (L) 1000 [mm]

土被り : $H1 = 1.510 \sim H2 = 3.000 [m]$

道路舗装厚 : t = 0.200 [m] 路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗 装 材 : $\gamma a = 22.5 \left[kN/m^3 \right]$

路盤材(地下水位以上) : $\gamma b = 19.0 [kN/m^3]$ 路盤材(地下水位以下) : $\gamma bw = 10.0 [kN/m^3]$

(鉛 直) : $\alpha = 1.000$

1.4 活荷重 (上載) : T'荷重 横断通行

(輪接地幅 a = 0.20m b = 0.50m)

(側載) : $Q = 10.0 [kN/m^2]$

1.5 衝撃係数 : i = 0.300

1.6 鉄筋かぶり : 頂版 底版 側壁

: (內側): (外側)40 mm40 mm40 mm40 mm

1.7 断面力低減係数(土被りH1) : $\beta = 0.9$

(土被りH2) : $\beta = 0.9$

- 1.8 許容応力度
- 1.8.1 鉄筋

引張応力度 : $\sigma \, \text{sa} = \, 160 \, [\, \text{N/mm}^2\,]$ 降伏点応力度 : $\sigma \, \text{sy} = \, 295 \, [\, \text{N/mm}^2\,]$

弹性係数 : Es = $2.0 \times 10^5 [N/mm^2]$

1.8.2 コンクリート

(1) 設計基準強度 : $\sigma \, ck = 40.0 \, N/mm^2$

(2) プレストレストコンクリート部材

PS導入時強度 : $σ ck' = 35.0 \text{ N/mm}^2$

PS導入直後

許容曲げ圧縮応力度 : σ cat = 19.0 N/mm² 許容曲げ引張応力度 : σ tat = -1.5 N/mm²

設計荷重作用時

許容曲げ圧縮応力度 : σ ca = 15.0 N/mm² 許容曲げ引張応力度 : σ ta = -1.5 N/mm²

(死荷重作用時)

許容曲が引張応力度 : σ ta' = 0.0 N/mm² 許容せん断応力度 : τ a = 0.270 N/mm² 許容斜引張応力度 : σ ia = -1.0 N/mm²

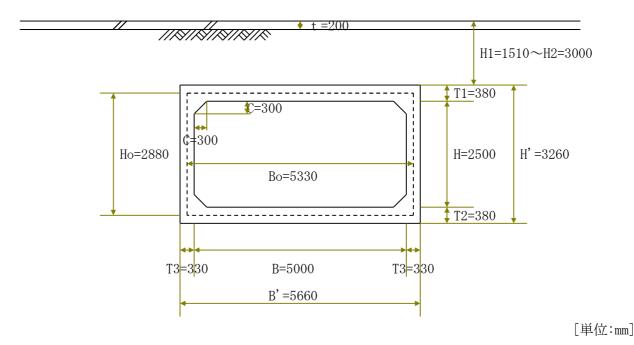
(3) 鉄筋コンクリート部材

許容曲げ圧縮応力度 : σ ca = 14.0 N/mm² 許容せん断応力度 : τ a = 0.270 N/mm²

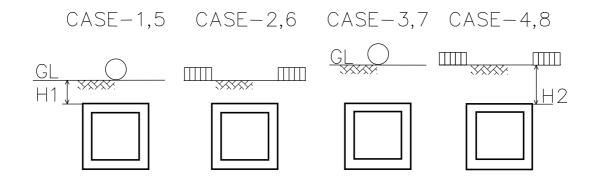
(4) 弾性係数 : $Ec = 3.1 \times 10^4 \text{ N/mm}^2$

1.8.3 PC鋼棒 (SBPR 1080 / 1230 C種1号)

(1) 許容引張応力度


引 張強度 : $\sigma pu = 1230 \text{ N/mm}^2$ 降 伏 点 強 度 : $\sigma py = 1080 \text{ N/mm}^2$ プレストレッシング中 : $\sigma pia = 972 \text{ N/mm}^2$ プレストレッシング直後 : $\sigma pca = 861 \text{ N/mm}^2$ 設計荷重作用時 : $\sigma pea = 738 \text{ N/mm}^2$

(2) 弹性係数 : Ep = $2.0 \times 10^5 \text{ N/mm}^2$


(3) 使用 P C 鋼棒

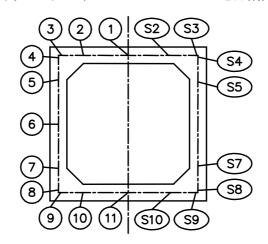
	頂版	底版	側壁	
径	ϕ 21	ϕ 23	****	(mm)
断面積	346.40	415.50	****	(mm^2)
設計引張力	290000	350000	*****	(N)

1.11 標準断面図

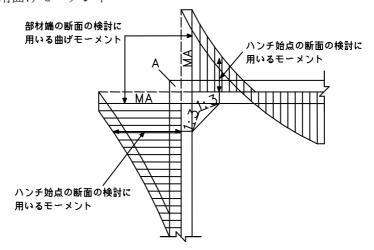
1.12 荷重の組合せ

[荷重 CASE]

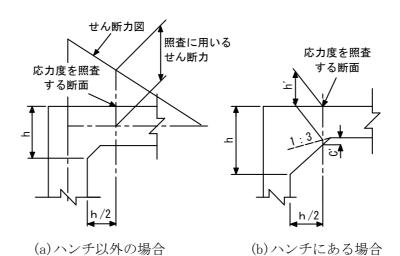
CASE 1, 3, 5, 7は、荷重がカルバート上載の場合 CASE 2, 4, 6, 8は、荷重がカルバート側載の場合 また


CASE 1, 2, 5, 6は、土被りH1 の場合 CASE 3, 4, 7, 8は、土被りH2 の場合 また

CASE 1, 2, 3, 4 は、地下水の影響が無い場合 CASE 5, 6, 7, 8 は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について

ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 ${\cal C}$ の 1/3 まで大きくとります。

h' = T + C'/3

3 断面力の算定 (CASE-1, 2)

3.1.1 設計荷重

(1) 頂版自重 $P vd1 = \gamma c \times T1$ (2) 鉛直土圧 $P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t + \gamma b \times t b \}$ (3) 水平土圧 $Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H1 - t - t b + T1/2) \}$ $Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b +$ $\gamma s \times (H1 - t - t b + T1/2 + Ho)$ (4) 載荷重 $Pq = Ka \times Q$ (5) 活荷重 輪分布幅 $u = a + 2 \times H1$ 3. 220 m $v = b + 2 \times H1$ 3.520 m P1 = $0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ (6) 底版反力 $qv = Pvd1 + Pvd2 + \{Pv1 \times u + \gamma c\}$ $\times (2 \times T3 \times Ho + 2 \times C^2)$ Bo

死荷重時	設計荷重時1	設計荷重時2
Pvd1+Pvd2 Phd1 B C Phd1 Phd2 A D Phd2	Phd1 Phd1 Phd2 A D Phd2	Phd1 Phd1 Phd1 A D

設計荷重値	死荷重時	設計荷重時 1 CASE-1	設計荷重 2 CASE-2
	(k N/m²)	(kN/m²)	$\frac{\text{CASE-2}}{(\text{k N/m}^2)}$
Pvd1	9. 310	9. 310	9.310
Pvd2	28.080	28.080	28.080
Phd1 = Phd1	15.750	15.750	****
Phd1 = Phd1 + Pq	****	****	20.750
Phd3 = Phd3	****	****	****
Phd3 = Phd3 + Pq	****	****	****
Phd5 = Phd5	****	****	****
Phd5 = Phd5 + Pq	****	****	****
Phd2 = Phd2	41.670	41.670	****
Phd2 = Phd2 + Pq	****	****	46.670
Phd4 = Phd4	****	****	****
Pvl	0.000	26. 426	0.000
q v	****	62. 919	****
q v'	46. 955	****	46.955

注) q v'は、P v1 = 0 とした場合の底版反力

3.1.2 構造解析

(1) ラーメン係数
$$\alpha = (\text{Ho} \times \text{T1}^3)/(\text{Bo} \times \text{T3}^3)$$

 $\beta = (\text{Ho} \times \text{T2}^3)/(\text{Bo} \times \text{T3}^3)$

 $\begin{array}{rcl}
N1 & = 2 + \alpha \\
N2 & = 2 + \beta
\end{array}$

(2) 荷 重 項 $CAD = q v \times Bo^2/12$

CBC = $\{2 \times (P vd1 + P vd2) \times B o^3 + P v1 \times u \times (3 \times B o^2 - u^2)\} / (24 \times B o)$

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$

- 注1) 死荷重時、設計荷重時2のCADは、qv=qv'
- 注2) 死荷重時、設計荷重時2のCBCは、Pvl=0
- 注3) Phd1~Phd5は、水平荷重(設計荷重参照)

(3) た わ み 角
$$\theta$$
 A = $\{N1 \times (CAB - CAD) - (CBC - CBA)\}/(N1 \times N2 - 1)$
 θ B = $\{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1)$

(4) 端モーメント MAB $= 2 \times \theta \text{ A} + \theta \text{ B} - \text{C} \text{ AB}$ MAD $= \beta \times \theta \text{ A} + \text{C} \text{ AD}$ MBA $= 2 \times \theta \text{ B} + \theta \text{ A} + \text{C} \text{ BA}$

 $MBC = \alpha \times \theta B - CBC$

MAB + MAD = 0 MBA + MBC = 0

計	算 値	死荷重時	設計荷重時 1 CASE-1	設計荷重時 2 CASE-2
α		0.8250	0. 8250	0. 8250
β		0.8250	0.8250	0.8250
N1		2.8250	2.8250	2.8250
N2		2.8250	2. 8250	2. 8250
C AD	(kN·m/m)	111. 161	148. 955	111. 161
C BC	$(kN \cdot m/m)$	88. 517	138. 312	88. 517
CAB	$(kN \cdot m/m)$	21.636	21.636	25. 092
C BA	$(kN \cdot m/m)$	18. 053	18. 053	21. 509
θ Α		-46. 323	-68 . 751	-44. 430
θ B		41. 340	66. 906	39. 447
 МАВ	(kN·m/m)	-72. 942	-92 . 233	-74 . 505
MAD	$(kN \cdot m/m)$	72.942	92. 233	74.505
MBA	$(kN \cdot m/m)$	54. 410	83. 113	55.972
MBC	(kN·m/m)	-54. 410	-83 . 113	-55. 972

3.1.3 各部材の断面力

- (1) 頂版
- 1) せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x$$

2) 曲げモーメント

$$\operatorname{Mmax} = (\operatorname{Pvd1} + \operatorname{Pvd2}) \times \operatorname{Bo^2} / 8 + \operatorname{Pv1} \times \operatorname{u} \times (\operatorname{Bo} / 2 - \operatorname{u} / 4) / 2 + \operatorname{MBC}$$

- (2) 底 版
- 1) せん断力

$$SXAD = qv \times Bo/2 - qv \times x$$

2) 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD$$

- (3) 側壁
- 1) せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3 - (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3 - (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

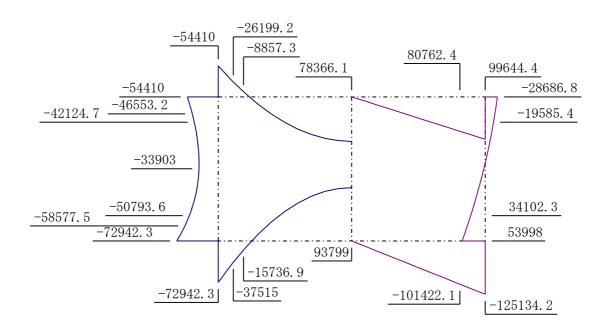
2) 曲げモーメント

節点間の極値は、せん断力が0となる位置に生じる。次式を解いて位置xを求める。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2 / (2 \times Ho)$$

$$Mmax = SAB \times x - Phd2 \times x^2 / 2 - (Phd1 - Phd2) \times x^3 / (6 \times Ho) + MAB$$

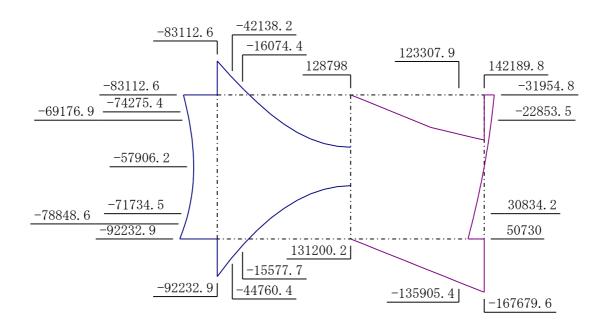
計 算	値	死荷重時	設計荷重時	設計荷重時 2
			CASE-1	CASE-2
SBC	(kN/m)	99. 644	142. 190	99.644
SCB	(kN/m)	-99.644	-142. 190	-99. 644
Mmax	$(kN \cdot m/m)$	78.366	128.798	76. 804
SAD	(kN/m)	125. 134	167.680	125. 134
SDA	(kN/m)	-125. 134	-167.680	-125. 134
Mmax	$(kN \cdot m/m)$	93. 799	131. 200	92. 237
SAB	(kN/m)	53. 998	50. 730	61. 198
SBA	(kN/m)	-28.687	-31. 955	-35. 887
X	(m)	1. 442	1.442	****
		1. 540	****	1. 540
Mmax	$(kN \cdot m/m)$	-33.903	-57.906	****
Mmax	(kN·m/m)	-33. 719	****	-30. 123


注1) 頂版 死荷重時・設計荷重時2は、Pv1 = 0 とする。

注2) 底版 死荷重時・設計荷重時2は、qv = qv とする。

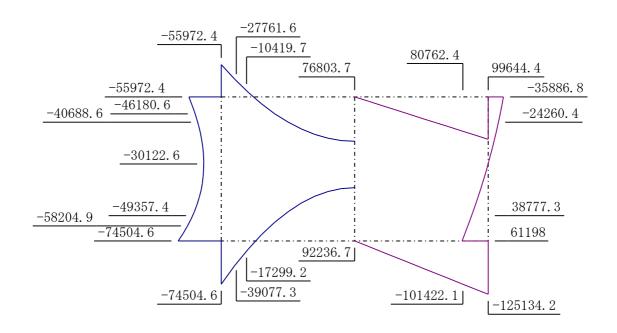
(1) 死荷重時 (CASE-1, 2)

部材	照査点	距 x(m)	曲げモーメント M(N·m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
頂版	3,S3 端 部	0. 165	-54410	99644	28687
	2 パチ始点	0. 465	-26199	***	28687
	S2 τ 点	0. 505	-8857	80762	28687
	1 中 央	2. 665	78366	0	28687
底版	9, S9 端 部	0. 165	-72942	125134	53998
	10 ハンチ始点	0. 465	-37515	***	53998
	S10 τ 点	0. 505	-15737	101422	53998
	11 中 央	2. 665	93799	0	53998
側壁	4, S4 上 端部 5 上/ν/f点 S5 上 τ 点 6 中 間	2. 690 2. 390 2. 375 1. 442 1. 540	-54410 -46553 -42125 -33903 -33719	-28687 *** -19585 ******	99644 102300 104114 112372 111504
	S7 下 τ 点	0. 505	-50794	34102	120665
	7 下/ν/チ点	0. 490	-58578	***	122479
	8,S8 下端部	0. 190	-72942	53998	125134


曲げモーメント(N·m) せん断力(N)

(1) 設計荷重時 1 (CASE-1)

部材	照査点	距 離 x(m)	曲げモーメント M(N·m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0. 165	-83113	142190	31955
頂版	2 パチ始点	0.465	-42138	***	31955
	S2 τ 点	0.505	-16074	123308	31955
	1 中央	2.665	128798	0	31955
	 9, S9 端 部	0. 165	 -92233	167680	50730
底版	10 パチ始点	0.465	-44760	***	50730
	S10 τ 点	0.505	-15578	135905	50730
	11 中 央	2.665	131200	0	50730
	 4,S4 上 端部	2. 690	-83113	-31955	142190
	5 上ハンチ点	2.390	-74275	***	144845
	S5 上 τ点	2.375	-69177	-22854	146659
側壁	6 中間	1.442	-57906	0	154917
	S7 下 τ 点	0.505	-71735	30834	163210
	7 下ハンチ点	0.490	-78849	***	165024
	8,88 下端部	0. 190	-92233	50730	167680


曲げモーメント(N·m) せん断力(N)

(1) 設計荷重時 2 (CASE-2)

(1) 設	計荷重時 2(CASE	-2)			[/単位長]
部材	照査点	距 離 x(m)	曲げモーメント M (N・m)	せん断力 S(N)	軸 力 N(N)
	 3,S3 端 部	0. 165	-55972	99644	35887
頂版	2 ハンチ始点	0.465	-27762	***	35887
	S2 τ 点	0.505	-10420	80762	35887
	1 中 央	2.665	76804	0	35887
	 9,S9 端 部	0. 165	-74505	125134	61198
底版	10 ハンチ始点	0.465	-39077	***	61198
	S10 τ 点	0.505	-17299	101422	61198
	11 中 央	2.665	92237	0	61198
	 4,S4 上 端部	2.690	 -55972	-35887	99644
	5 上ハンチ点	2.390	-46181	***	102300
	S5 上 τ点	2.375	-40689	-24260	104114
側壁	6 中 間	1.540	-30123	0	111504
	S7 下 τ 点	0.505	-49357	38777	120665
	7 下ハンチ点	0.490	-58205	***	122479
	8,S8 下 端部	0.190	-74505	61198	125134

曲げモーメント(N·m) せん断力(N)

3. 断面力の算定 (CASE-3, 4)

3.2.1 設計荷重

(1) 頂版自重 $P vd1 = \gamma c \times T1$ (2) 鉛直土圧 $P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$ (3) 水平土圧 $Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H2 - t - t b + T1/2) \}$ $Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b +$ $v \times (H2 - t - t + T1/2 + H_0)$ (4) 載荷重 $Pq = Ka \times Q$ (5) 活荷重 輪分布幅 $u = a + 2 \times H2$ 6.200 m $v = b + 2 \times H2$ 6.500 m P1 = $0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ (6) 底版反力 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo$

死荷重時 設計荷重時1 設計荷重時2 PVIPvd1+Pvd2 Phd1 Phd1 Phd1 Phd1 Phd1 Phd1 C Phd2 Phd2 Phd2 Phd2 ďν ďv' ďν 設計荷重値 死荷重時 設計荷重時1 設計荷重時2 CASE-3 CASE-4 (kN/m^2) (kN/m^2) (kN/m^2) 9.310 Pvd1 9.310 9.310 Pvd2 54.900 54.900 54.900 Phd1 = Phd129.160 29.160 **** Phd1 = Phd1 + Pq**** ***** 34.160 Phd3 = Phd3***** ***** ***** Phd3 = Phd3 + Pq***** ***** ***** Phd5 = Phd5***** ***** ***** Phd5 = Phd5 + Pq***** ***** ***** Phd2 = Phd255.080 55.080 ***** Phd2 = Phd2 + Pq***** ***** 60.080 Phd4 = Phd4***** ***** ***** Pv1 13.724 0.000 0.000 **** ***** 87.499 q v qv' 73.775 **** 73.775

注) q v' は、P v1=0 とした場合の底版反力。

3.2.2 構造解析

(1) ラーメン係数 $\alpha = (\text{Ho} \times \text{T1}^3)/(\text{Bo} \times \text{T3}^3)$ $\beta = (\text{Ho} \times \text{T2}^3)/(\text{Bo} \times \text{T3}^3)$

 $N1 = 2 + \alpha$ $N2 = 2 + \beta$

(2) 荷 重 項 $CAD = q v \times Bo^2/12$

 $CBC = \{(Pvd1 + Pvd2 + Pv1) \times Bo^2\} / 12$

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$

注1) 死荷重時、設計荷重時2のCADは、qv=qv'

注2) 死荷重時、設計荷重時2のCBCは、Pv1=0

注3) Phd1~Phd5は、水平荷重(設計荷重参照)

(3) たわみ角 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}/(N1 \times N2 - 1)$ $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1)$

(4) 端モーメント MAB = $2 \times \theta A + \theta B - CAB$

 $MAD = \beta \times \theta A + CAD$

 $MBA = 2 \times \theta B + \theta A + CBA$

 $MBC = \alpha \times \theta B - CBC$

MAB + MAD = 0 MBA + MBC = 0

死荷重時	設計荷重時 1 CASE-3	設計荷重時 2 CASE-4
0. 8250	0.8250	0.8250
0.8250	0.8250	0.8250
2.8250	2.8250	2.8250
2. 8250	2.8250	2.8250
174. 655	207. 146	174. 655
152.011	184. 502	152.011
30.905	30. 905	34. 361
27. 322	27. 322	30.778
-76. 035	-93. 838	-74. 141
71. 052	88. 855	69. 158
111. 923	129. 726	113. 485
111.923	129. 726	113. 485
93. 391	111. 194	94. 953
-93. 391	111. 194	-94. 953
	0. 8250 0. 8250 2. 8250 2. 8250 174. 655 152. 011 30. 905 27. 322 -76. 035 71. 052 111. 923 111. 923 93. 391	CASE-3 0. 8250

3.2.3 各部材の断面力

- (1) 頂 版
- 1) せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x$$

- 2) 曲げモーメント $\operatorname{Mmax} = (\operatorname{Pvd1} + \operatorname{Pvd2}) \times \operatorname{Bo^2/8} + \operatorname{Pv1} \times \operatorname{Bo^2/8} + \operatorname{MBC}$
- (2) 底 版
- 1) せん断力

$$SXAD = qv \times Bo/2 - qv \times x$$

2) 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD$$

- (3) 側壁
- 1) せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3 - (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3 - (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

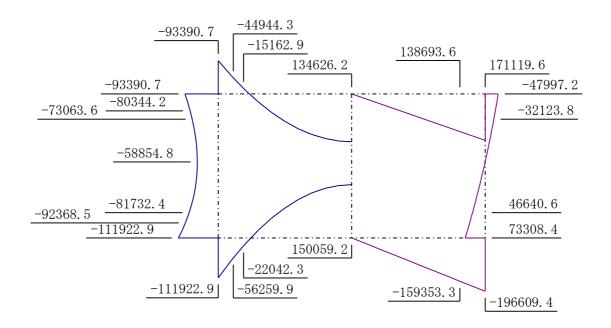
2) 曲げモーメント

節点間の極値は、せん断力が0となる位置に生じる。次式を解いて位置xを求める。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2 / (2 \times Ho)$$

$$Mmax = SAB \times x - Phd2 \times x^2 / 2 - (Phd1 - Phd2) \times x^3 / (6 \times Ho) + MAB$$

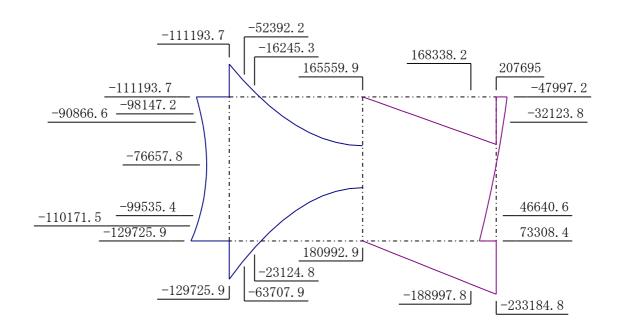
計算値	死荷重時	設計荷重時 1 CASE-3	設計荷重時 2 CASE-4
SBC (kN/m)	171. 120	207. 695	171. 120
SCB (kN/m)	-171.120	-207.695	-171.120
Mmax (kN·m/m)	134. 626	165. 560	133.064
SAD (kN/m)	196.609	233. 185	196.609
SDA (kN/m)	-196.609	-233. 185	-196. 609
$Mmax (kN \cdot m/m)$	150.059	180. 993	148. 497
SAB (kN/m)	73. 308	73. 308	80. 508
SBA (kN/m)	-47.997	-47. 997	-55. 197
\mathbf{x} (m)	1. 520	1. 520	****
	1. 511	****	1. 511
$Mmax (kN \cdot m/m)$	-58.855	-76.658	****
Mmax (kN·m/m)	-58.856	****	-55. 247


注1) 頂版 死荷重時・設計荷重時2は、Pvl = 0 とする。

注2) 底版 死荷重時・設計荷重時2は、qv = qv'とする。

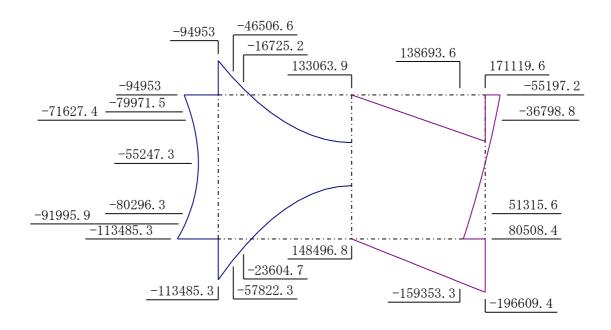
(1) 死荷重時 (CASE-3, 4)

部材	照査点	距 離 x(m)	曲げモーメント M (N·m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
否此	3, S3 端 部	0. 165	-93391	171120	47997
頂版	2 nンチ始点 S2 点	0.465	-44944 15162	***	47997
	S2 τ 点	0. 505	-15163	138694	47997
	1 中央	2. 665	134626	0	47997
	9, S9 端 部	0. 165	-111923	196609	73308
底版	10 ハンチ始点	0.465	-56260	***	73308
	S10 τ 点	0.505	-22042	159353	73308
	11 中 央	2.665	150059	0	73308
	 4,S4 上 端部	2. 690	-93391	-47997	171120
	5 上ハンチ点	2.390	-80344	***	173775
	S5 上 τ点	2.375	-73064	-32124	175589
側壁	6 中 間	1.520	-58855	*****	183157
		1.511	-58856	*****	183236
	S7 下 τ 点	0.505	-81732	46641	192140
	7 下ハンチ点	0.490	-92369	***	193954
	8, S8 下 端部	0. 190	-111923	73308	196609


曲げモーメント(N·m) せん断力(N)

(2) 設計荷重時 1 (CASE-3)

部材	照査点	距 離 x(m)	曲げモーメント M(N·m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	3,S3 端 部	0. 165	-111194	207695	47997
頂版	2 ハンチ始点	0.465	-52392	***	47997
	S2 τ 点	0.505	***	168338	***
	1 中央	2.665	165560	0	47997
	9,S9 端 部	0. 165	-129726	233185	73308
底版	10 パチ始点	0.465	-63708	***	73308
	S10 τ 点	0.505	***	188998	***
	11 中 央	2.665	180993	0	73308
	 4,S4 上 端部	2. 690	 -111194	-47997	207695
	5 上ハンチ点	2.390	-98147	***	210350
	S5 上 τ 点	2.375	***	-32124	***
側壁	6 中 間	1.520	-76658	0	219732
	S7 下 τ 点	0.505	***	46641	***
	7 下ハンチ点	0.490	-110172	***	230530
	8, S8 下 端部	0. 190	-129726	73308	233185


曲げモーメント(N·m) せん断力(N)

(3) 設計荷重時 2 (CASE-4)

部材	照査点	距 離 x (m)	曲げモーメント M (N・m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3,S3 端 部	0. 165	-94953	171120	55197
頂版	2 ハンチ始点	0.465	-46507	***	55197
	S2 τ 点	0.505	***	138694	***
	1 中央	2. 665	133064	0	55197
	 9,S9 端 部	0. 165	-113485	196609	80508
底版	10 ハンチ始点	0.465	-57822	***	80508
	S10 τ 点	0.505	***	159353	***
	11 中 央	2.665	148497	0	80508
	 4,S4 上 端部	2. 690	-94953	-55197	171120
	5 上ハンチ点	2.390	-79972	***	173775
	S5 上 τ点	2.375	***	-36799	***
側壁	6 中 間	1.511	-55247	0	183236
	S7 下 τ 点	0.505	***	51316	*****
	7 下ハンチ点	0.490	-91996	***	193954
	8,S8 下 端部	0.190	-113485	80508	196609

曲げモーメント(N·m) せん断力(N)

4 プレストレスの計算

4.1 荷重による曲げ応力度

 $\sigma m = \pm M/Z = \pm 6 \times M/(b \times T^2) \times 1000$

 ここに、σm:曲げ応力度
 (N/mm²)

 M:曲げモーメント
 (kN·m)

 Z:断面係数
 (cm³)

 B:部材幅
 (cm)

 T:部材厚
 (cm)

4.2 有効プレトレス

(1) 有効係数 n

 $\eta = \sigma \operatorname{pe} / \sigma \operatorname{pt}$ $\sigma \operatorname{pt} = \operatorname{Pt} / \operatorname{Ap} \times 1/100$ $\sigma \operatorname{pe} = \sigma \operatorname{pt} - \triangle \sigma \operatorname{pcs} - \triangle \sigma \operatorname{pr}$ $\triangle \sigma \operatorname{pcs} = [\operatorname{n} \times \phi \times (\sigma \operatorname{cd} + \sigma \operatorname{cpt}) + \operatorname{Ep} \times \varepsilon \operatorname{cs}] / [1 + \operatorname{n} \times (\sigma \operatorname{cpt} / \sigma \operatorname{pt}) \times (1 + \phi / 2)]$ $\sigma \operatorname{cpt} = \operatorname{Np} \times \operatorname{Pt} \times (1 / \operatorname{Ac} + \operatorname{ep}^2 / 1) \times 10$ $\triangle \sigma \operatorname{pr} = \gamma \times \sigma \operatorname{pt}$

ここに、 σpt : 有効引張応力度 (N/mm²) Pt : 緊張作業直後のPC鋼棒引張応力度 (kN)

 Ap
 : 1 本当りのPC鋼棒断面積
 (cm²)

 $\triangle \sigma pcs$: コンクリートの乾燥収縮及びクリープ

によるPC鋼棒の応力度の減少量 (N/mm²)

n : 弹性係数比 (Ep / Ec = 6.45)

Ep : PC鋼棒の弾性係数 $(2.0 \times 10^5 \text{ N/mm}^2)$ Ec : コンクリートの弾性係数 $(3.1 \times 10^4 \text{ N/mm}^2)$

 ϕ : クリープ係数 (= 2.5)

σcd : 考えているPC鋼棒位置における永久

荷重によるコンクリートの圧縮応力度 (N/mm²)

σ cpt : 考えている P C 鋼棒位置における緊張

作業直後のプレストレス (N/mm²)

 ϵcs : コンクリートの乾燥収縮度 (= 200 μ)

σpt : 緊張作業直後のPC鋼棒の引張応力度 (N/mm²)
 Np : m当りPC鋼棒本数 (本)
 Ac : コンクリート断面積 (cm²)
 ep : PC鋼棒偏心量 (cm)
 I : 断面二次モーメント (cm⁴)

 $\triangle \sigma pr$: PC鋼棒のリラクセーションによる

引張応力度の減少量 (N/mm²)

 γ : PC鋼棒の見掛けのリラクセーション(= 0.03)

(2) 有効プレストレス σce

 $\sigma ce = Np \times Pt \times \eta \times (1 / Ac \pm ep / Z) \times 10$ (N/mm²)

ここに、 Np : m当りPC鋼棒本数 (本)

Pt : 引張作業直後 (kN)

η : 有効係数

 Ac
 : コンクリート断面積
 (cm²)

 ep
 : PC鋼棒偏心量
 (cm)

 Z
 : 断面係数
 (cm³)

4.3 合成応力度

 $\sigma c = \sigma m + \sigma ce + N / Ac \times 10$

 ここに、σc : 合成応力度 (N/mm²)

 σm : 曲げ応力度 (N/mm²)

 σce : 有効プレストレス (N/mm²)

 N : 軸方向圧縮力 (kN)

 Ac : コンクリート断面積 (cm²)

4.4 引張鉄筋量の計算

(1) 曲げモーメント

引張鉄筋は次の荷重作用に対して、引張応力の作用する区間に配置する。

荷重の組み合わせ (永久荷重 + 変動荷重) × 1.35

(2) 配置鉄筋量

配置鉄筋量は次の1)、2)のうちいずれか大きい値以上とする。

1) の値

 $As1 = Tc / \sigma sa \times 10$ $= b \times x \times | \sigma c1 | / (2 \times \sigma sa)$ $\therefore x = | \sigma c1 | / (\sigma c2 + | \sigma c1 |) \times T$

2) の値

 $As2 = 0.005 \times b \times x$

 ここに、 As1 : 引張鉄筋断面積
 (cm²)

 As2 : 引張鉄筋断面積
 (cm²)

引張応力の作用する

コンクリート面積の 0.5%

Tc : 断面に生じる引張力の合力 (kN) σ sa : 鉄筋の許容引張応力度 (N/mm²) σ c1 : 引張縁に生じる引張応力度 (N/mm²) σ c2 : 圧縮縁に生じる圧縮応力度 (N/mm²)

b : 部材幅 (cm) x : 引張縁から中立軸までの距離 (cm) T : 部材厚 (cm)

(cm)

4.5 斜引張応力度の計算

斜引張応力度は次式を用いて、断面図心位置における値を求める。

$$\sigma$$
i = 1 / 2 × $[\sigma$ x - $\sqrt{(\sigma x^2 + 4 \times \tau^2)}]$
 σ x = $[Pe / Ac + N / Ac] \times 10$
 τ = $S \times G / (b \times I) \times 10$
 I = $b \times T^3 / 12$
 G = $b \times T^2 / 8$
ここに、 σ i : 斜引張応力度
 σ x : 部材軸方向圧縮応力度
 τ : せん断応力度
 τ : せん断応力度
 τ : せん断応力度
 τ : せん断力
 τ : せん断力
 τ : があ一次モーメント
 τ : 部材幅
 τ : 断面二次モーメント
 τ : 部材厚
 τ : 部材厚

4.6 破壊安全度の検討

(1) 曲げモーメント

1) 安全係数

破壊に対する安全度の検討に使用する安全係数を次のように定める。

材料強度に関するもの ----- 1.0 荷重作用に関するもの(永久荷重作用) - - - - - - - 1.3 または 1.7 (変動荷重作用) ------ 2.5 または 1.7

終局荷重作用時の曲げモーメント

終局荷重作用時の曲げモーメントは、次に示す荷重作用の大きい方とする。

$$Md = 1.3 \times M1 + 2.5 \times M2$$
 (kN·m)
 $Md = 1.7 \times M1 + 1.7 \times M2$ (kN·m)

Md : 終局荷重作用時曲げモーメント ここに、

M1 : 永久荷重による曲げモーメント : 変動荷重による曲げモーメント M2(設計荷重時 - 死荷重時)

(2) 曲げ破壊安全度

$$Sf = Mu / Md > 1.0$$

$$\begin{aligned} \text{Mu} &= 0.7 \times (0.93 \times \text{Ap} \times \sigma \, \text{pud} \times \text{dp}) \\ &\times \left[1 - \text{Ap} / (1.7 \times \text{b} \times \text{dp}) \right. \\ &\times 0.93 \times \sigma \, \text{pud} / \sigma \, \text{ck} \right] \times 1/1000 \\ &+ \text{As} \times \sigma \, \text{syd} \times \text{ds} \times \left[1 - \text{As} / (1.7 \times \text{b} \times \text{ds}) \right. \\ &\times \sigma \, \text{syd} / \sigma \, \text{ck} \right] \times 1/1000 \end{aligned}$$

ここに、 Mu : 破壊抵抗曲げモーメント $(kN \cdot m)$ Ap : PC鋼棒断面積 (cm^2) As : 鉄筋の断面積 (cm^2) σ pud : P C 鋼棒引張強度 (N/mm^2) σ syd : 引張鉄筋の降伏点応力度 (N/mm^2) : コンクリートの設計基準強度 (N/mm^2) σck dp: 圧縮縁からPC鋼棒図心迄の距離 (cm) ds : 圧縮縁から鉄筋図心迄の距離 (cm) b : 部材幅 (cm)

Sf : 曲げ破壊安全度

終局つり合い鋼材比が配置される引張鋼材比より大であることを確認する。

$$P pb = 0.68 \times \epsilon cu / (\epsilon cu + \epsilon sp)$$

$$\times \sigma ck / (0.93 \times \sigma pud) +$$

$$0.68 \times \epsilon cu / (\epsilon cu + \epsilon s)$$

$$\times \sigma ck / \sigma syd$$

$$P pd = Ap / (b \times dp) + As / (b \times ds)$$

$$\times \sigma syd / (0.93 \times \sigma pud) \times ds / dp < P pb$$

ここに、 Ppb : 終局つり合い鋼材比

Ppd : 引張鋼材比

ε cu : コンクリートの終局ひずみ (0.0035) ε sp : P C 鋼棒の終局ひずみ (0.015) σ pud : P C 鋼棒の引張強さ (N/mm²)

εs : 引張鉄筋の降伏ひずみ (σ syd/Es)

5 PC部材の検討

5.1 頂版

5.1.1 断面諸元

位	置	部材幅	部材厚	断面積	断面二次モーメント	中立軸	断面係数
		(cm)	(cm)	(cm^2)	(cm^4)	(cm)	(cm^3)
端	部	100.00	48.00	4800.0	921600.00	24.00	38400.00
ハンチな	始点	100.00	38.00	3800.0	457266.67	19.00	24066.67
τ	点	100.00	38.00	3800.0	457266.67	19.00	24066.67
中	央	100.00	38.00	3800.0	457266.67	19.00	24066.67

5.1.2 使用PC鋼棒

位置	径	本数	断面積	設計引張力	偏心量	モーメント方向
		(本/m)	(cm^2)	(N/本)	(cm)	(部材軸より)
端部	φ 21	6. 00	3. 464	290000	2.00	外側
ハンチ始点	ϕ 21	6.00	3.464	290000	-3.00	外側
τ 点	ϕ 21	6.00	3.464	290000	-3.00	外側
中 央	$\phi 21$	6.00	3.464	290000	3.00	内 側

5.1.3 有効係数

計算	項/	σpt	σcpt	σ cd	$\triangle \sigma pcs$	$\triangle \sigma pr$	σpe	有効係数	ケース
位	置				(N/mm^2)				
(1)	死荷	前重時 (z	最大圧縮)						
端	部	837. 18	3. 70	-0.20	90.60	25. 12	721.46	0.862	3
ハンチュ	始点	837. 18	4. 92	0.29	114. 37	25. 12	697.69	0.833	3
τ	点	837. 18	4. 92	0.10	111.47	25. 12	700.60	0.837	3
中	央	837. 18	4. 92	-0.88	96.87	25. 12	715. 20	0.854	3
(2)	死荷	前重時 (j	最大引張)						
端	部	837. 18	3.70	-0.20	90.60	25. 12	721.46	0.862	3
ハンチュ	始点	837. 18	4. 92	0.29	114. 37	25. 12	697.69	0.833	3
τ	点	837. 18	4. 92	0.10	111.47	25. 12	700.60	0.837	3
中	央	837. 18	4. 92	-0.88	96.87	25. 12	715. 20	0.854	3
(3)	設計	荷重時	(最大圧縮)						
端	部	837. 18	3. 70	-0.20	90.60	25. 12	721.46	0.862	3
ハンチュ	始点	837. 18	4. 92	0.29	114. 37	25. 12	697.69	0.833	3
τ	点	837. 18	4. 92	0.10	111.47	25. 12	700.60	0.837	4
中	央	837. 18	4. 92	-0.88	96.87	25. 12	715. 20	0.854	3
(4)	設計	荷重時	(最大引張)						
端	部	837. 18	3. 70	-0.20	90.60	25. 12	721.46	0.862	3
ハンチュ	始点	837. 18	4. 92	0.29	114. 37	25. 12	697.69	0.833	3
τ	点	837. 18	4. 92	0.10	111.47	25. 12	700.60	0.837	4
中	央	837. 18	4. 92	-0.88	96.87	25. 12	715. 20	0.854	3

5.1.4 合成応力度

位	置	曲げ応力度	N/Ac	有効プレストレス	合成応力度	ケース
		σm		σсе	σс	
		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	
(1))死	荷重時 (最大圧縮)				
端	部	2. 43	0.10	2. 34	4. 88	3
ハンチを	始点	1.87	0. 13	5. 62	7.62	3
中	央	5. 59	0.13	2.06	7. 78	3
				$\sigma c < 15.0$	CHECK	OK
(2)) 死	荷重時 (最大引張)				
端	部	-2. 43	0. 10	3. 90	1. 57	3
ハンチ	始点	-1.87	0. 13	2.01	0. 27	3
中	央	-5. 59	0. 13	5. 76	0.30	3
				σt > 0.0	CHECK	OK
(3))設	計荷重時 (最大圧縮)				
端	部	2. 90	0. 10	2.34	5. 34	3
ハンチ		2. 18	0. 13	5. 62	7. 93	3
中	央	6.88	0. 13	2.06	9.06	3
				σ c < 15.0	CHECK	OK
(4))設	計荷重時 (最大引張)				
端	部	-2.90	0. 10	3.90	1.11	3
ハンチな	始点	-2. 18	0. 13	2.01	-0.04	3
中	央	-6.88	0. 13	5. 76	-0.99	3
				σ t $>$ -1.5	CHECK	OK

5.1.5 引張鉄筋量

位	置	曲げモーメント	合成応	力度	X	Тс	引張鈞	:筋量	ケース
			外側	内側			As1	As2	
		$(kN \cdot m/m)$	(N/m)	\mathbf{m}^2)	(cm)	(kN)	(cm^2)	/m)	
端	部	-150. 111	0.13	6. 39	1.0	0.0	0.000	0.000	3
ハンチュ	始点	-70.729	-0.76	8.73	3.0	11.6	0.722	1.521	3
中	央	223. 506	-3.35	11.52	8.6	143.6	8.972	4. 283	3

----- 使用鉄筋及び鉄筋量 -----

	径	本数	径	本数	断面積		判定	
外 側	D 13 —	6	D 0 —	- 0	$7.602 \text{ cm}^2/\text{m}$	>	Asl or	As2
内 側	D 16 —	6	D 0 —	- 0	$11.916 \text{ cm}^2/\text{m}$	>	Asl or	As2

5.1.6 斜引張応力度

位	置	部材幅	断面一次	軸力	せん断力	Ре	σс'	τ	σi	ケース
		(cm)	モーメント (cm³)	(kN)	(kN)	(kN)		(N/mm^2)		
端	部	100.0	28800	47. 997	207. 695	1499.50	3. 22	0.65	-0.126	3
τ	点	100.0	18050	47.997	168.338	1456. 12	3.96	0.66	-0.109	3
						σi	> -1	00	CHECK ()K

5.1.7 破壊安全度の検討

終局荷重時の曲げモーメント

位	置	M1	M2	1. 3M1+2. 5M2	1.7 (M1+M2)	Md	ケース
		$(kN \cdot m)$					
端	部	-93. 391	-17.803	-165. 915	-189.029	-189. 029	3
ハンチュ	始点	-44. 944	-7. 448	-77.047	-89. 067	-89.067	3
中	央	134.626	30. 934	252.348	281. 452	281.452	3

位	置	Аp	As	dр	d s	Ppb	Ppd	Mu	Sf	ケース
		(cm^2/m)	(cm^2/m)	(cm)	(cm)			$(kN \cdot m)$		
端	部	20.784	7. 602	26.0	44.0	0.069	0.009	472.45	2.5	3
ハンチな	始点	20.784	7.602	16.0	34.0	0.069	0.014	283.60	3.2	3
中	央	20.784	11. 916	22.0	34.0	0.069	0.011	425.65	1.5	3

Ppb > Ppd Sf > 1.0 CHECK OK

5.2 底版

5.2.1 断面諸元

位	置	部材幅	部材厚	断面積	断面二次モーメント	中立軸	断面係数
		(cm)	(cm)	(cm^2)	(cm^4)	(cm)	(cm^3)
端	部	100.00	48.00	4800.0	921600.00	24.00	38400.00
ハンチュ	始点	100.00	38.00	3800.0	457266.67	19.00	24066.67
τ	点	100.00	38.00	3800.0	457266.67	19.00	24066.67
中	央	100.00	38.00	3800.0	457266.67	19.00	24066.67

5.2.2 使用PC鋼棒

位置	径	本数	断面積	設計引張力	偏心量	モーメント方向
		(本/m)	(cm^2)	(N/本)	(cm)	(部材軸より)
端部	φ 23	6.00	4. 155	350000	2.00	外側
ハンチ始点	ϕ 23	6.00	4. 155	350000	-3.00	外側
τ 点	ϕ 23	6.00	4. 155	350000	-3.00	外側
中央	ϕ 23	6.00	4. 155	350000	3.00	内 側

5.2.3 有効係数

位 置 (N/mm²) (1) 死荷重時 (最大圧縮)	S51 3
(1) 死荷重時 (最大圧縮)	351 3
	3
端 部 842.36 4.47 -0.24 100.40 25.27 716.69 0.5	
パチ始点 842.36 5.94 0.37 128.67 25.27 688.41 0.5	317
τ 点 842.36 5.94 0.15 125.46 25.27 691.63 0.5	3 3
中央 842.36 5.94 -0.95 109.28 25.27 707.81 0.5	340 3
(2) 死荷重時 (最大引張)	
端 部 842.36 4.47 -0.24 100.40 25.27 716.69 0.5	3 3
パチ始点 842.36 5.94 0.37 128.67 25.27 688.41 0.5	317
τ 点 842.36 5.94 0.15 125.46 25.27 691.63 0.5	3 3
中央 842.36 5.94 -0.95 109.28 25.27 707.81 0.8	340 3
(3) 設計荷重時 (最大圧縮)	
端 部 842.36 4.47 -0.24 100.40 25.27 716.69 0.5	3 3
パチ始点 842.36 5.94 0.37 128.67 25.27 688.41 0.5	317
τ 点 842.36 5.94 0.15 125.46 25.27 691.63 0.5	321 4
中央 842.36 5.94 -0.95 109.28 25.27 707.81 0.5	340 3
(4) 設計荷重時 (最大引張)	
端 部 842.36 4.47 -0.24 100.40 25.27 716.69 0.5	3 3
バチ始点 842.36 5.94 0.37 128.67 25.27 688.41 0.3	3 3
τ 点 842.36 5.94 0.15 125.46 25.27 691.63 0.5	321 4
中央 842.36 5.94 -0.95 109.28 25.27 707.81 0.5	340 3

5.2.4 合成応力度

位	置	曲げ応力度	N/Ac	有効プレストレス	合成応力度	ケース
		σ m		σсе	σс	
		(N/mm^2)	$(\mathrm{N/mm^2})$	(N/mm^2)	(N/mm^2)	
(1))死	荷重時 (最大圧縮)				
端	部	2. 91	0. 15	2.79	5. 82	3
ハンチュ	始点	2.34	0.19	6.66	9. 18	3
中	央	6. 24	0. 19	2.44	8.62	3
				$\sigma c < 15.0$	CHECK	OK
(2))死	荷重時 (最大引張)				
端	部	-2. 91	0. 15	4.65	1.87	3
ハンチュ	始点	-2.34	0. 19	2.38	0.16	3
中	央	-6. 24	0. 19	6.84	0.97	3
				$\sigma t > 0.0$	CHECK	OK
(3) 設					
端	部	3.38	0. 15	2.79	6. 32	3
	始点	2.65	0. 19	6.66	9. 55	3
中	央	7. 52	0. 19	2.44	9.84	3
				σ c < 15.0	CHECK	OK
(4) 設					
端	部	-3.38	0. 15	4.65	1. 36	3
	始点	-2.65	0. 19	2.38	-0. 21	3
中	央	-7. 52	0. 19	6.84	-0. 25	3
				σ t $>$ -1.5	CHECK	OK

5.2.5 引張鉄筋量

位	置	曲げモーメント	合成応力度		X	Тс	引張鈞	引張鉄筋量	
			外側	内側			As1	As2	
		$(kN \cdot m/m)$	(N/m	m^2)	(cm)	(kN)	(cm^2)	/m)	
端	部	-176. 780	0.21	7. 56	1. 3	0.0	0.000	0.000	3
ハンチュ	始点	-89. 201	-1.12	10.57	3.6	20.5	1.279	1.823	3
中	央	235. 418	-2.73	12.43	6.8	93. 5	5.842	3.422	3

----- 使用鉄筋及び鉄筋量 -----

	径	本数	径	本数	断面積		判定	
外 側	D 13 —	6	D 0 —	- 0	$7.602 \text{ cm}^2/\text{m}$	>	Asl or	As2
内 側	D 16 —	6	D 0 —	- 0	$11.916 \text{ cm}^2/\text{m}$	>	Asl or	As2

5.2.6 斜引張応力度

乜	<u>L</u>	置	部材幅	断面一次	軸力	せん断力	Ре	σс'	τ	σi	ケース
			(cm)	モーメント (cm³)	(kN)	(kN)	(kN)		(N/mm^2)		
垃	岩	部	100.0	28800	73. 308	233. 185	1786.70	3.84	0.72	-0.129	3
1	5	点	100.0	18050	73.308	188.998	1724. 25	4.69	0.73	-0.112	3
-							σi	> -1.()()	CHECK ()K

5.2.7 破壊安全度の検討

終局荷重時の曲げモーメント

位	置	M1	M2	1. 3M1+2. 5M2	1.7 (M1+M2)	Md	ケース
		$(kN \cdot m)$					
端	部	-111. 923	-17.803	-190.007	-220. 534	-220. 534	3
ハンチュ	始点	-56. 260	-7. 448	-91.758	-108.303	-108.303	3
中	央	150.059	30. 934	272.411	307.688	307.688	3

位	置	Аp	As	dр	d s	Ppb	Ppd	Mu	Sf	ケース
		(cm^2/m)	(cm^2/m)	(cm)	(cm)			$(kN \cdot m)$		
端	部	24. 930	0.000	26.0	44.0	0.069	0.010	533. 24	2.4	3
ハンチな	冶点	24.930	0.000	16.0	34.0	0.069	0.017	311. 19	2.8	3
中	央	24. 930	11. 916	22. 0	34.0	0.069	0.013	473. 15	1.6	3

Ppb > Ppd Sf > 1.0 CHECK OK

6 断面力集計表

各ケースより断面力の最大値を抽出する。

M	:	部材モーメント	$(kN \cdot m)$
S	:	せん断力	(kN)
N	:	軸力	(kN)
е	:	M/N偏心位量	(cm)
С	:	部材中心軸と鉄筋間距離	(cm)
Ms	:	軸力を考慮した曲げモーメント	$(kN \cdot m)$

 $Ms = N \times (e + c) / 100$ (kN·m)

但し、軸力は

頂版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

[/単位長]

部材	点	M	N	е	С	Ms	CASE
		$(kN \cdot m)$	(kN)	(cm)	(cm)	$(kN \cdot m)$	M
	端部	*****	*****	*****	*****	*****	**
頂版	ハンチ始点	*****	*****	*****	*****	*****	**
	中 央	******	*****	*****	*****	*****	**
	端部	*****	*****	*****	*****	*****	**
底版	かが始点	*****	*****	*****	*****	*****	**
	中 央	*****	*****	*****	*****	*****	**
	上端部	-111. 194	207. 695	53. 54	17. 50	147. 540	3
	上ハンチ点	-98. 147	210. 350	46.66	12.50	124. 441	3
側壁	中間	-76. 658	219. 732	34. 89	12. 50	104. 124	3
	下ハンチ点	-110. 171	230. 530	47. 79	12.50	138. 988	3
	下端部	-129. 726	233. 185	55. 63	17. 50	170. 533	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

注2) ***** 表示は、PC部材。

7 必要有効高および必要鉄筋量

7.1 必要有効高

 ここに、 Ms : 軸力を考慮した曲げモーメント
 (kN·m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

7.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σ sa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

	Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
	$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
端部	*****	*****	*****	****	*****
かが始点	*****	*****	*****	*****	*****
中 央	*****	*****	*****	****	*****
端部	*****	*****	*****	****	*****
ハンチ始点	*****	*****	*****	*****	*****
中 央	*****	*****	*****	*****	*****
上端部	147. 540	21.40	25. 40	43.00	13.919
上ハンチ点	124. 441	19. 65	23. 65	33.00	18. 156
中間	104. 124	17. 98	21.98	33.00	12. 167
下心チ点	138. 988	20. 77	24. 77	33.00	20. 809 16. 780
	中端 少5 中端 少5 中端 少6 中端 上2 上2 中 上2 中 目 日	端 部 ***********************************	端 部 ******** **************************	端 部 ******** **************************	端 部 ******** ****** ****** ************

d+d'

CHECK OK

8 配筋及び実応力度

実応力度は、次式により計算する。

8.1 コンクリート及び鉄筋

$$\sigma c = N/\{b \times x/2 - n \times As/x \times (c + T/2 - x)\}$$

$$\sigma s = n \times \sigma c/x \times (c + T/2 - x)$$

 ここに、 N : 軸力
 (kN)

 b : 部材幅
 (cm)

 T : 部材厚
 (cm)

 c : 部材中心軸と鉄筋間距離
 (cm)

 As : 主鉄筋断面積
 (cm²)

 x : 中心軸。次の3次元方程式より求める。
 (cm)

 x³ -3 × (T/2-e)×x²

 $-3 \times (1/2-e) \times x$ $+6 \times n \times A s / b \times (e+c) \times x$ $-6 \times n \times A s / b \times (c+T/2)$ $\times (e+c) = 0$

e : 偏心位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0

部材	点	部材幅	使用鉄筋量	X	実际	実応力度(N/mm²)		
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σs	
	端部	****	*****	*****	*****	****	****	
頂版	ハンチ始点	****	*****	*****	*****	****	****	
	中 央	*****	*****	*****	*****	*****	****	
	端部	*****	*****	*****	*****	*****	****	
底版	ハンチ始点	****	*****	*****	*****	****	****	
	中 央	****	*****	****	*****	*****	****	
	上端部	100.00	23. 226	16.996	5. 21	101. 1	0.0	
	上ハンチ点	100.00	23. 226	13. 551	7.50	128.3	0.0	
側壁	中間	100.00	23. 226	14.412	5.97	90.7	0.0	
	下ハンチ点	100.00	23. 226	13.492	8.41	145.0	0.0	
	下端部	100.00	23. 226	16.851	6.06	119.5	0.0	

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

9 せん断力に対する検討

9.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	123. 308	80.762	168. 338	138.694				
頂版	M			-16. 245					
τ点	N			47. 997					
	最大			0					
	S	135. 905	101. 422	188. 998	159. 353				
底版	M			-23. 125					
τ点	N			73. 308					
	最大			0					
	S	-22. 854	-24. 260	-32. 124	-36. 799				
側壁上	M				-71. 627				
τ点	N				175. 589				
	最大				0				
側壁下 τ 点	S	30. 834	38. 777	46.641	51. 316				
	M				-80. 296				
	N				192. 140				
	最大		-		0	-			

ここに、S: せん断力(kN)、M: モーメント(kN・m)、N: 軸力(kN)を示す。

9.2 せん断応力度の検討

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$au = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot \tau a$$
ここに、 S : せん断力 (kN) d : 有効高さ (cm) b : 部材幅 (cm)

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1.0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) を τ a に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和を b d で除して求める。

引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
補正係数(Cpt)	0.7	0.9	1.0	1. 2	1. 5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数 (CN) を τ a に乗じる。

CN = 1 + Mo/M $Mo = \{(Pe+N) \cdot Z/Ac + Pe \cdot ep\}$ $tilde{E} \subseteq CN \subseteq 2$

ここに、CN:軸方向力による補正係数

Mo: 有効プレストレス力及び軸方向力によりコンクリートの応力度が引張縁で

0となる曲げモーメント(kN・m)

M:断面に作用する曲げモーメント(kN・m)

N:断面に作用する軸方向圧縮力(kN)

Pe: PC鋼棒に作用するm当りの全有効引張力(kN)

Z:図心軸に関する断面係数(m3)

Ac: 部材断面積(m2)

ep: PC鋼棒の偏心量<引張縁側+/圧縮縁側->(m)

照査位置	T	ď	d	Се	引張	姜鉄筋	Pt	Cpt
	(cm)	(cm)	(cm)		径-本数	As(cm2)	(%)	
頂版τ点	38. 0	4.0	34.0	1. 377	D13-6	7. 602	0. 224	0. 924
底版 τ 点	38. 0	4.0	34.0	1. 377	D13-6	7. 602	0. 224	0. 924
側壁上 τ 点	33.0	4.0	29.0	1.400	D22-6	23. 226	0.801	1.381
側壁下τ点	33.0	4.0	29.0	1.400	D22-6	23. 226	0.801	1.381

照査位置	M	Ре	N	Ac	Z	ер	Мо	Cn
	(kN • m)	(kN)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版 τ 点	-16. 245	1456. 1	47. 997	0.380	0.02407	-0.03	51. 590	2.000
底版 τ 点	-23. 125	1724. 2	73. 308	0.380	0.02407	-0.03	62. 132	2.000
側壁上τ点	-71.627	0.0	175. 589	0.330	0.01815	0.00	9. 657	1. 135
側壁下τ点	-80. 296	0.0	192. 140	0.330	0.01815	0.00	10.568	1. 132

照査位置	τα		補正		
		Се	Cpt	Cn	τа
頂版τ点	0. 270	1. 377	0.924	2.000	0. 687
底版 τ 点	0. 270	1. 377	0.924	2.000	0. 687
側壁上 τ 点	0. 270	1.400	1. 381	1. 135	0. 592
側壁下 τ 点	0.270	1.400	1. 381	1. 132	0. 591

照査位置	せん断力	有効高	せん断応力度	補正
	S	d	τ	τа
	(kN)	(cm)	(N/mm2)	(N/mm2)
頂版 τ 点	168. 338	34. 0	0. 495	0.687
底版 τ 点	188. 998	34. 0	0. 556	0.687
側壁上τ点	36. 799	29. 0	0. 127	0. 592
側壁下τ点	51. 316	29. 0	0. 177	0. 591

 $\tau < \tau$ a CHECK OK

以上