受付 No. 台帳 No. KL411002

	プ		レ	#	F	ヤ	7	Z	١	
	P	C	ボ	ック	ノス	力	ルノ	Ÿ	· }	
	設		計		計	•	算		書	
П	П	_				-				

○内空寸法: 内 幅 (B) 2300 mm

内 高 (H) 2000 mm 長 さ (L) 2000 mm

○設計条件: 荷 重 T'荷重 (横断)

土被り H1= 0.500 m H2= 1.500 m

千 葉 窯 業 株 式 会 社

- 1 設計条件
- 1.1 一般条件

構造形式 : 一径間ボックスラーメン

内空寸法 : (B) 2300 × (H) 2000 × (L) 2000 [mm]

土被り : $H1 = 0.500 \sim H2 = 1.500 [m]$

道路舗装厚 : t = 0.200 [m] 路盤厚 : tb = 0.000 [m]

1.2 単位容積重量

舗 装 材 : $\gamma a = 22.5 [kN/m^3]$

路盤材(地下水位以上) : $\gamma b = 19.0 \text{ [kN/m}^3\text{]}$ 路盤材(地下水位以下) : $\gamma bw = 10.0 \text{ [kN/m}^3\text{]}$

鉄筋コンクリート : $\gamma c = 24.5 [kN/m^3]$ 土 (地下水位以上) : $\gamma s = 18.0 [kN/m^3]$

土 (地下水位以下) : $\gamma w = 9.0 [kN/m^3]$

1.3 土圧係数 (水平) : Ka = 0.500

(鉛 直) $: \alpha = 1.000$

1.4 活荷重 (上載) : T'荷重 横断通行

(輪接地幅 a = 0.20m b = 0.50m)

(側載) : $Q = 10.0 [kN/m^2]$

- 1.5 衝撃係数 : i = 0.300
- 1.6 鉄筋かぶり : 頂版 底版 側壁

: (内側) 35 mm 35 mm 35 mm: (外側) 35 mm 35 mm 35 mm

1.7 断面力低減係数(土被りH1) : β = 0.9

(土被りH2) : $\beta = 0.9$

- 1.8 許容応力度
- 1.8.1 鉄筋

引張応力度 : $\sigma \, \text{sa} = \, 160 \, [\text{N/mm}^2]$ 降伏点応力度 : $\sigma \, \text{sy} = \, 295 \, [\text{N/mm}^2]$

弹性係数 : Es = $2.0 \times 10^5 [N/mm^2]$

1.8.2 コンクリート

(1) 設計基準強度 : $\sigma \text{ ck} = 40.0 \text{ N/mm}^2$

(2) プレストレストコンクリート部材

PS導入時強度 : $σ ck' = 35.0 \text{ N/mm}^2$

PS導入直後

許容曲げ圧縮応力度 : $\sigma \text{ cat} = 19.0 \text{ N/mm}^2$ 許容曲げ引張応力度 : $\sigma \text{ tat} = -1.5 \text{ N/mm}^2$

設計荷重作用時

許容曲げ圧縮応力度 : σ ca = 15.0 N/mm² 許容曲げ引張応力度 : σ ta = -1.5 N/mm²

(死荷重作用時)

許容曲が引張応力度 : σ ta' = 0.0 N/mm² 許容せん断応力度 : τ a = 0.270 N/mm² 許容斜引張応力度 : σ ia = -1.0 N/mm²

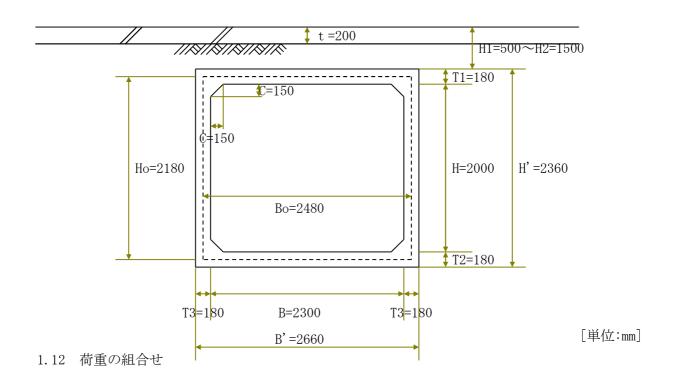
(3) 鉄筋コンクリート部材

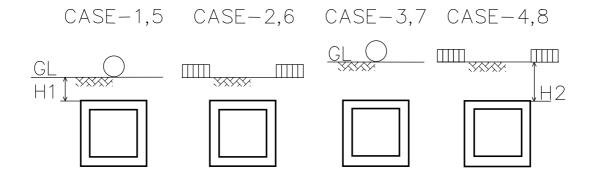
許容曲げ圧縮応力度 : σ ca = 14.0 N/mm² 許容せん断応力度 : τ a = 0.270 N/mm²

(4) 弾性係数 : $Ec = 3.1 \times 10^4 \text{ N/mm}^2$

1.8.3 PC鋼棒 (SBPR 1080 / 1230 C種1号)

(1) 許容引張応力度


引 張強度 : $\sigma pu = 1230 \text{ N/mm}^2$ 降 伏 点 強 度 : $\sigma py = 1080 \text{ N/mm}^2$ プレストレッシング中 : $\sigma pia = 972 \text{ N/mm}^2$ プレストレッシング直後 : $\sigma pca = 861 \text{ N/mm}^2$ 設計荷重作用時 : $\sigma pea = 738 \text{ N/mm}^2$


(2) 弹性係数 : Ep = $2.0 \times 10^5 \text{ N/mm}^2$

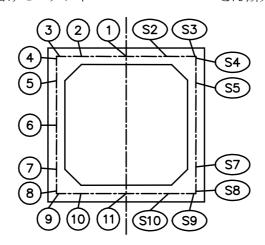
(3) 使用 P C 鋼棒

頂版 底版 側壁 ϕ 21 ϕ 21 径 ***** (mm) (mm^2) 断面積 346.40 346.40 ***** 設計引張力 290000 290000 (N) ****

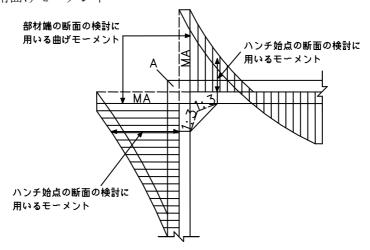
1.11 標準断面図

[荷重 CASE]

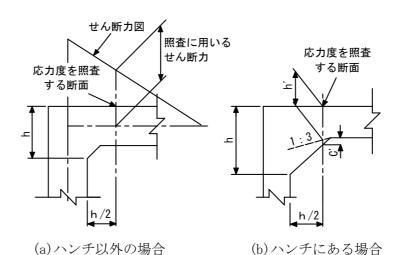
CASE 1, 3, 5, 7は、荷重がカルバート上載の場合 CASE 2, 4, 6, 8は、荷重がカルバート側載の場合 また


CASE 1, 2, 5, 6は、土被りH1 の場合 CASE 3, 4, 7, 8は、土被りH2 の場合 また

CASE 1, 2, 3, 4 は、地下水の影響が無い場合 CASE 5, 6, 7, 8 は、地下水の影響が有る場合


■ 本設計書は、CASE-1, 2, 3, 4 について行う。

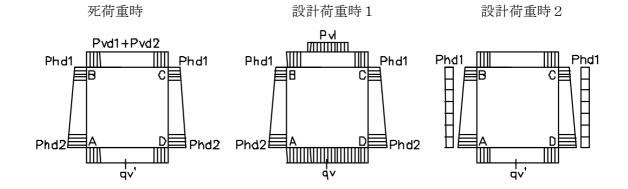
2 断面力計算


ボックスカルバートの曲げモーメント及びせん断力照査位置 曲げモーメント せん断力

1) 断面検討用曲げモーメント

2) せん断力に対する照査

b) について


ハンチにある場合の部材断面の高さは、ハンチにかかっている部分 C の 1/3 まで大きくとります。

h' = T + C'/3

3 断面力の算定 (CASE-1, 2)

3.1.1 設計荷重

(1)	頂版自重	$P vd1 = \gamma c \times T 1$			
(2)	鉛直土圧	$P vd2 = \alpha \times \{ \gamma s \times (H1 - t - t b) + \gamma a \times t \}$	+ γ	$b \times tb$	
(3)	水平土圧	$Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H + \gamma b) \}$	1—	t - t b +	-T1/2)
		$Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b +$			
		$\gamma s \times (H1 - t - t b + T1/2 + Ho)$			
(4)	載 荷 重	$Pq = Ka \times Q$			
(5)	活荷重	輪分布幅 u = a +2×H1	=	1. 200	m
		$v = b + 2 \times H1$	=	1.500	m
		P1 = $0.4 \times T \times (1 + i) \times \beta$	=	117.000	kN
		$Pv1 = 2 \times P1/2.75/u$			
(6)	底版反力	$q v = P v d1 + P v d2 + \{P v 1 \times u + \gamma c$			
		$\times (2 \times T3 \times H_0 + 2 \times C^2)$ } / Bo			

設計荷重値	死荷重時	設計荷重時 1	設計荷重2
	(kN/m²)	CASE-1 (kN/m²)	CASE-2 (kN/m²)
Pvd1	4. 410	4. 410	4. 410
Pvd2	9.900	9.900	9.900
Phd1 = Phd1	5. 760	5.760	****
Phd1 = Phd1 + Pq	****	****	10.760
Phd3 = Phd3	****	****	****
Phd3 = Phd3 + Pq	****	****	****
Phd5 = Phd5	****	****	****
Phd5 = Phd5 + Pq	****	****	****
Phd2 = Phd2	25. 380	25. 380	****
Phd2 = Phd2 + Pq	****	****	30. 380
Phd4 = Phd4	****	****	****
Pv1	0.000	70.909	0.000
q v	****	56.818	****
q v'	22. 508	****	22. 508

注) q v'は、P v l = 0 とした場合の底版反力

3.1.2 構造解析

(1) ラーメン係数
$$\alpha = (\text{Ho} \times \text{T1}^3)/(\text{Bo} \times \text{T3}^3)$$

 $\beta = (\text{Ho} \times \text{T2}^3)/(\text{Bo} \times \text{T3}^3)$

 $\begin{array}{rcl}
N1 & = 2 + \alpha \\
N2 & = 2 + \beta
\end{array}$

(2) 荷 重 項
$$CAD = q v \times Bo^2/12$$

CBC = $\{2 \times (P vd1 + P vd2) \times B o^3 + P v1 \times u \times (3 \times B o^2 - u^2)\} / (24 \times B o)$

 $CAB = (Ho^2) \times (2 \times Phd1 + 3 \times Phd2) / 60$

CBA = $(Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$

- 注1) 死荷重時、設計荷重時2のCADは、qv=qv'
- 注2) 死荷重時、設計荷重時2のCBCは、Pvl=0
- 注3) Phd1~Phd5は、水平荷重(設計荷重参照)

(3) た わ み 角
$$\theta$$
 A = $\{N1 \times (CAB - CAD) - (CBC - CBA)\}/(N1 \times N2 - 1)$
 θ B = $\{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1)$

MAB
$$= 2 \times \theta \text{ A} + \theta \text{ B} - \text{C} \text{ AB}$$

MAD $= \beta \times \theta \text{ A} + \text{C} \text{ AD}$
MBA $= 2 \times \theta \text{ B} + \theta \text{ A} + \text{C} \text{ BA}$

MBA = $2 \times \theta B + \theta A + CB$ MBC = $\alpha \times \theta B - CBC$

MAB+MAD = 0 MBA+MBC = 0

計	算 値	死荷重時	設計荷重時 1 CASE-1	設計荷重時 2 CASE-2
α		0. 8790	0. 8790	0. 8790
β		0.8790	0.8790	0.8790
N1		2.8790	2.8790	2.8790
N2		2.8790	2. 8790	2. 8790
C AD	(kN·m/m)	 11. 536	29. 121	11. 536
CBC	$(kN \cdot m/m)$	7. 334	31.654	7. 334
C AB	$(kN \cdot m/m)$	6. 943	6. 943	8.923
C BA	$(kN \cdot m/m)$	5. 389	5. 389	7. 369
<i>θ</i> A		-2. 081	-12. 364	-1. 027
θ B		1. 398	13. 417	0.345
MAB	(kN·m/m)	-9. 707	-18. 253	-10.633
MAD	$(kN \cdot m/m)$	9.707	18. 253	10.633
MBA	$(kN \cdot m/m)$	6. 105	19.860	7.032
MBC	(kN·m/m)	-6. 105	-19. 860	-7. 032

3.1.3 各部材の断面力

- (1) 頂版
- 1) せん断力

$$SXBC = \{(Pvd1 + Pvd2) \times Bo + Pv1 \times u\}/2 - (Pvd1 + Pvd2) \times x$$

2) 曲げモーメント

$$\operatorname{Mmax} = (\operatorname{Pvd1} + \operatorname{Pvd2}) \times \operatorname{Bo^2} / 8 + \operatorname{Pv1} \times \operatorname{u} \times (\operatorname{Bo} / 2 - \operatorname{u} / 4) / 2 + \operatorname{MBC}$$

- (2) 底 版
- 1) せん断力

$$SXAD = qv \times Bo/2 - qv \times x$$

2) 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD$$

- (3) 側壁
- 1) せん断力

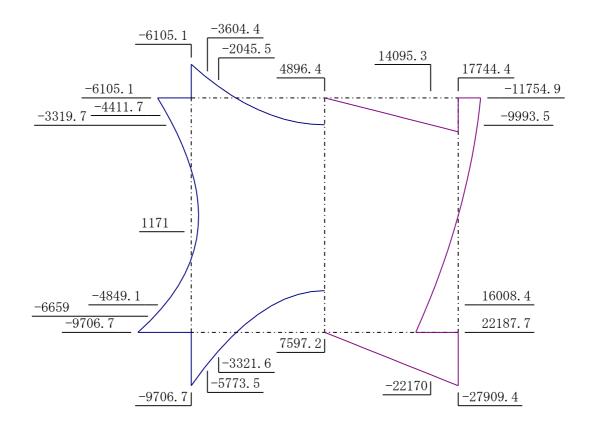
$$\begin{array}{lll} S\:XAB &=& P\:hd1 \times Ho/2 + (P\:hd2 - P\:hd1) \times Ho/3 - (MAB + MBA)/Ho \\ && - P\:hd2 \times x + (P\:hd2 - P\:hd1) \times x^{\,2}/(2 \times Ho) \\ S\:XBA &=& P\:hd1 \times Ho/2 + (P\:hd2 - P\:hd1) \times Ho/3 - (MAB + MBA)/Ho \\ && - P\:hd2 \times x + (P\:hd2 - P\:hd1) \times x^{\,2}/(2 \times Ho) \end{array}$$

2) 曲げモーメント

節点間の極値は、せん断力が0となる位置に生じる。次式を解いて位置xを求める。

$$Sx$$
 = $SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2 / (2 \times Ho)$
 $Mmax$ = $SAB \times x - Phd2 \times x^2 / 2 - (Phd1 - Phd2) \times x^3 / (6 \times Ho) + MAB$

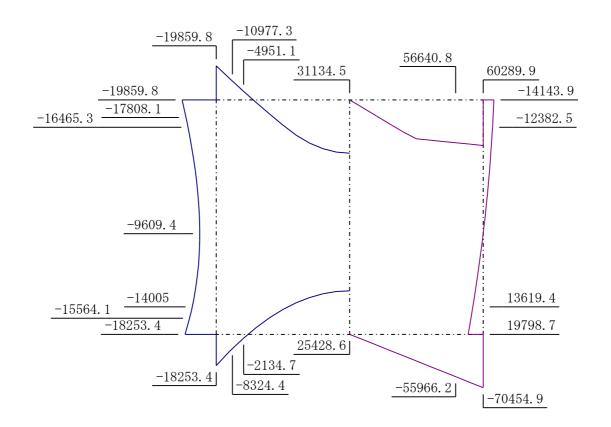
計算	値	死荷重時	設計荷重時 CASE-1	1 設計荷重時 2 CASE-2
SBC	(kN/m)	17. 744	60. 290	17. 744
SCB	(kN/m)	-17. 744	-60. 290	-17. 744
Mmax	$(kN \cdot m/m)$	4.896	31. 134	3. 970
SAD	(kN/m)	27. 909	70. 455	27. 909
SDA	(kN/m)	-27. 909	-70. 455	-27. 909
Mmax	$(kN \cdot m/m)$	7. 597	25. 429	6. 671
S AB	(kN/m)	22. 188	19. 799	27. 638
SBA	(kN/m)	-11. 755	-14. 144	-17. 205
X	(m)	0. 935	0. 935	****
		1.084	****	1.084
Mmax	$(kN \cdot m/m)$	1. 171	-9.609	****
Mmax	(kN·m/m)	1. 344	****	3. 388


注1) 頂版 死荷重時・設計荷重時2は、Pv1 = 0 とする。

注2) 底版 死荷重時・設計荷重時2は、qv = qv とする。

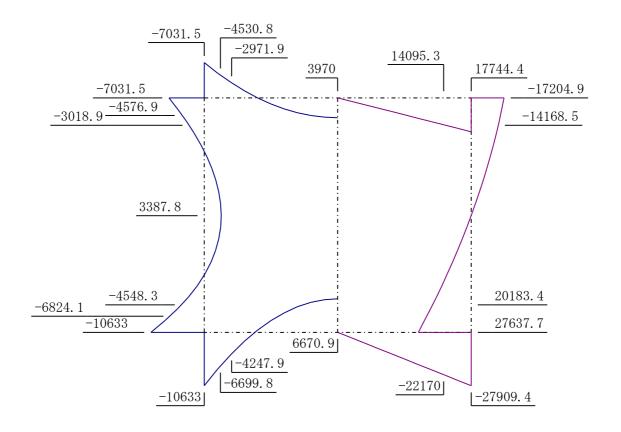
(1) 死荷重時 (CASE-1, 2)

部材	照査点	距 離 x (m)	曲げモーメント M (N・m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
頂版	3, S3 端 部 2 ///////////////////////////////////	0. 090 0. 240 0. 255 1. 240	-6105 -3604 -2046 4896	17744 *** 14095 0	11755 11755 11755 11755
底版	9, S9 端 部 10 ////////////////////////////////////	0. 090 0. 240 0. 255 1. 240	-9707 -5774 -3322 7597	27909 *** 22170 0	22188 22188 22188 22188 22188
側壁	4, S4 上 端部 5 上 ν/ f 点 S5 上 τ 点 6 中 間 S7 下 τ 点 7 下 ν/ f 点 8, S8 下 端部	2. 090 1. 940 1. 925 0. 935 1. 084 0. 255 0. 240 0. 090	-6105 -4412 -3320 1171 1344 -4849 -6659 -9707	-11755 *** -9994 ****** 16008 *** 22188	17744 18444 18933 23550 22855 26720 27210 27909


曲げモーメント(N·m) せん断力(N)

(1) 設計荷重時 1 (CASE-1)

部材	照查点	距離 x(m)	曲げモーメント M (N·m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	3,S3 端 部	0. 090	-19860	60290	14144
頂版	2 ハンチ始点	0.240	-10977	***	14144
	S2 τ 点	0. 255	-4951	56641	14144
	1 中央	1. 240	31135	0	14144
	 9,S9 端 部	0.090	-18253	70455	19799
底版	10 ハンチ始点	0.240	-8324	***	19799
	S10 τ 点	0.255	-2135	55966	19799
	11 中 央	1. 240	25429	0	19799
	 4,S4 上 端部	2. 090	-19860	-14144	60290
	5 上ハンチ点	1.940	-17808	***	60989
	S5 上 τ点	1.925	-16465	-12383	61479
側壁	6 中 間	0.935	-9609	0	66095
	S7 下 τ 点	0.255	-14005	13619	69266
	7 下ハンチ点	0.240	-15564	***	69756
	8, S8 下 端部	0.090	-18253	19799	70455


曲げモーメント(N·m) せん断力(N)

(1) 設計荷重時 2 (CASE-2)

部材	照査点	距離 x(m)	曲げモーメント M (N·m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	3,S3 端 部	0.090	-7032	17744	17205
頂版	2 ハンチ始点	0.240	-4531	***	17205
	S2 τ 点	0.255	-2972	14095	17205
	1 中央	1.240	3970	0	17205
	 9,S9 端 部	0.090	-10633	27909	27638
底版	10 パチ始点	0.240	-6700	***	27638
	S10 τ 点	0.255	-4248	22170	27638
	11 中 央	1. 240	6671	0	27638
	 4,S4 上 端部	2. 090	-7032	-17205	17744
	5 上ハンチ点	1.940	-4577	***	18444
	S5 上 τ 点	1.925	-3019	-14169	18933
側壁	6 中 間	1.084	3388	0	22855
	S7 下 τ 点	0.255	-4548	20183	26720
	7 下ハンチ点	0.240	-6824	***	27210
	8, S8 下 端部	0.090	-10633	27638	27909

曲げモーメント(N·m) せん断力(N)

3. 断面力の算定 (CASE-3,4)

3.2.1 設計荷重

(1) 頂版自重 $P vd1 = \gamma c \times T1$ (2) 鉛直土圧 $P vd2 = \alpha \times \{ \gamma s \times (H2 - t - t b) + \gamma a \times t + \gamma b \times t b \}$ (3) 水平十圧 $Phd1 = Ka \times \{ \gamma a \times t + \gamma b \times t b + \gamma s \times (H2 - t - t b + T1/2) \}$ $Phd2 = Ka \times \{ \gamma a \times t + \gamma b \times t b +$ $v \times (H2 - t - t + T1/2 + H_0)$ (4) 載荷重 $Pq = Ka \times Q$ (5) 活荷重 輪分布幅 $u = a + 2 \times H2$ 3.200 m $v = b + 2 \times H2$ 3.500 m P1 = $0.4 \times T \times (1 + i) \times \beta$ = 117.000 kN $Pv1 = 2 \times P1/2.75/u$ (6) 底版反力 $qv = Pvd1 + Pvd2 + Pv1 + \gamma c \times (2 \times T3 \times Ho + 2 \times C^2) / Bo$

死荷重時 設計荷重時1 設計荷重時2 PVIPvd1+Pvd2 Phd1 Phd1 Phd1 Phd1 Phd1 Phd1 C C C Phd2 Phd2 Phd2 Phd2 ďν' qν' ďν 設計荷重値 死荷重時 設計荷重時1 設計荷重時2 CASE-3 CASE-4 (kN/m^2) (kN/m^2) (kN/m^2) Pvd1 4.410 4.410 4.410 Pvd2 27.900 27.900 27.900 Phd1 = Phd114.760 14.760 **** Phd1 = Phd1 + Pq**** ***** 19.760 Phd3 = Phd3***** ***** ***** Phd3 = Phd3 + Pq***** ***** ***** Phd5 = Phd5***** ***** ***** Phd5 = Phd5 + Pq***** ***** ***** Phd2 = Phd234.380 34.380 ***** Phd2 = Phd2 + Pq***** ***** 39.380 Phd4 = Phd4***** ***** ***** Pv1 0.000 26.591 0.000 **** ***** 67.099 q v q v' 40.508 **** 40.508

注) q v' は、P v1=0 とした場合の底版反力。

3.2.2 構造解析

(1) ラーメン係数 $\alpha = (\text{Ho} \times \text{T1}^3)/(\text{Bo} \times \text{T3}^3)$ $\beta = (\text{Ho} \times \text{T2}^3)/(\text{Bo} \times \text{T3}^3)$

 $\begin{array}{rcl}
N1 & = 2 + \alpha \\
N2 & = 2 + \beta
\end{array}$

(2) 荷 重 項 $CAD = q v \times Bo^2/12$

 $CBC = \{ (Pvd1 + Pvd2 + Pv1) \times Bo^{2} \} / 12$ $CAB = (Ho^{2}) \times (2 \times Phd1 + 3 \times Phd2) / 60$

 $CBA = (Ho^2) \times (2 \times Phd2 + 3 \times Phd1) / 60$

注1) 死荷重時、設計荷重時2のCADは、qv=qv'

注2) 死荷重時、設計荷重時2のCBCは、Pv1=0

注3) Phd1~Phd5は、水平荷重(設計荷重参照)

(3) たわみ角 $\theta A = \{N1 \times (CAB - CAD) - (CBC - CBA)\}/(N1 \times N2 - 1)$ $\theta B = \{N2 \times (CBC - CBA) - (CAB - CAD)\}/(N1 \times N2 - 1)$

(4) 端モーメント MAB = $2 \times \theta A + \theta B - CAB$

 $MAD = \beta \times \theta A + CAD$

 $MBA = 2 \times \theta B + \theta A + CBA$

 $MBC = \alpha \times \theta B - CBC$

MAB + MAD = 0 MBA + MBC = 0

死荷重時	設計荷重時 1 CASE-3	設計荷重時 2 CASE-4
0. 8790	0. 8790	0.8790
0.8790	0.8790	0.8790
2.8790	2.8790	2.8790
2. 8790	2.8790	2.8790
20. 762	34. 390	20. 762
16.560	30. 189	16.560
10.508	10.508	12. 488
8. 954	8. 954	10. 934
-5. 094	-12. 347	-4. 040
4. 411	11. 664	3. 357
-16. 284	-23. 537	-17. 210
16. 284	23. 537	17. 210
12.682	19. 935	13.609
-12.682	-19. 935	-13.609
	0. 8790 0. 8790 2. 8790 2. 8790 20. 762 16. 560 10. 508 8. 954 -5. 094 4. 411 -16. 284 16. 284 12. 682	CASE-3 0. 8790

3.2.3 各部材の断面力

- (1) 頂 版
- 1) せん断力

$$SXBC = (Pvd1 + Pvd2 + Pv1) \times Bo/2 - (Pvd1 + Pvd2 + Pv1) \times x$$

- 2) 曲げモーメント $Mmax = (Pvd1 + Pvd2) \times Bo^{2}/8 + Pv1 \times Bo^{2}/8 + MBC$
- (2) 底 版
- 1) せん断力

$$SXAD = qv \times Bo/2 - qv \times x$$

2) 曲げモーメント

$$Mmax = q v \times B o^2 / 8 - MAD$$

- (3) 側壁
- 1) せん断力

$$S XAB = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3 - (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

$$S XBA = Phd1 \times Ho/2 + (Phd2 - Phd1) \times Ho/3 - (MAB + MBA)/Ho$$

$$- Phd2 \times x + (Phd2 - Phd1) \times x^2/(2 \times Ho)$$

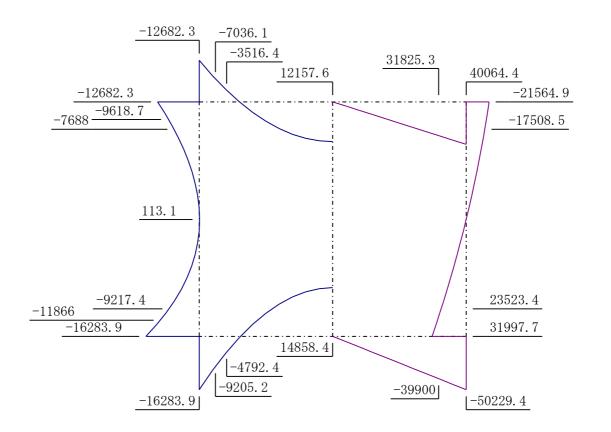
2) 曲げモーメント

節点間の極値は、せん断力が0となる位置に生じる。次式を解いて位置xを求める。

$$Sx = SAB - Phd2 \times x - (Phd1 - Phd2) \times x^2 / (2 \times Ho)$$

$$Mmax = SAB \times x - Phd2 \times x^2 / 2 - (Phd1 - Phd2) \times x^3 / (6 \times Ho) + MAB$$

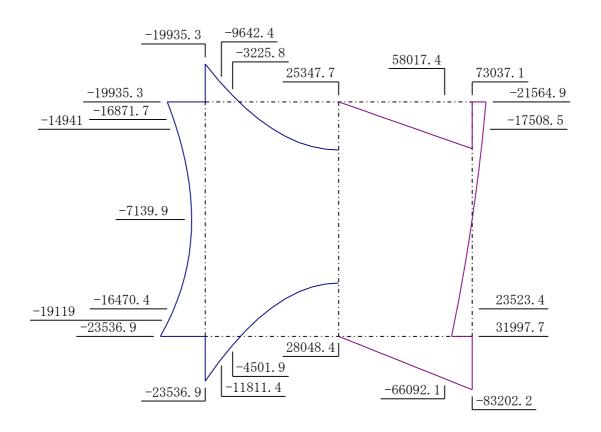
計 算	値	死荷重時	設計荷重時	1 設計荷重時 2
			CASE-3	CASE-4
SBC	(kN/m)	40.064	73. 037	40.064
SCB	(kN/m)	-40.064	-73. 037	-40.064
Mmax	$(kN \cdot m/m)$	12. 158	25. 348	11. 231
SAD	(kN/m)	50. 229	83. 202	50. 229
SDA	(kN/m)	-50. 229	-83. 202	-50. 229
Mmax	$(kN \cdot m/m)$	14.858	28. 048	13. 932
SAB	(kN/m)	31. 998	31. 998	37. 448
SBA	(kN/m)	-21.565	-21. 565	-27.015
X	(m)	1.085	1. 085	****
		1.086	****	1.086
Mmax	$(kN \cdot m/m)$	0. 113	-7. 140	****
Mmax	$(kN \cdot m/m)$	0. 113	****	2. 157


注1) 頂版 死荷重時・設計荷重時2は、Pvl = 0 とする。

注2) 底版 死荷重時・設計荷重時2は、qv = qv'とする。

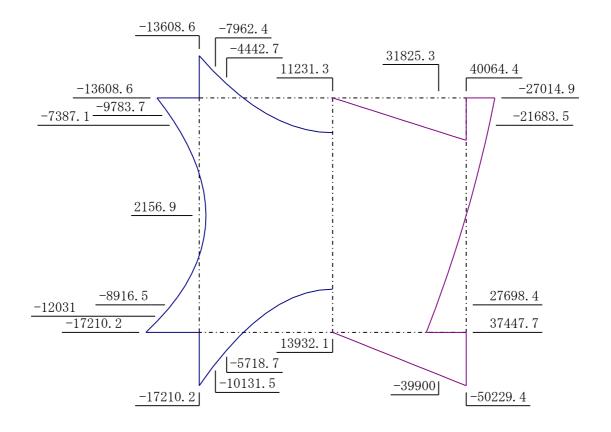
(1) 死荷重時 (CASE-3, 4)

部材	照査点	距離 x(m)	曲げモーメント M (N・m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0. 090	-12682	40064	21565
頂版	2 /Vチ始点	0. 240	-7036	***	21565
	S2 τ 点	0. 255	-3516	31825	21565
	1 中央	1. 240	12158	0	21565
	9, S9 端 部	0.090	-16284	50229	31998
底版	10 ハンチ始点	0.240	-9205	***	31998
	S10 τ 点	0.255	-4792	39900	31998
	11 中 央	1. 240	14858	0	31998
	 4,S4 上 端部	2. 090	 -12682	-21565	40064
	5 上ハンチ点	1.940	-9619	***	40764
	S5 上 τ 点	1.925	-7688	-17509	41253
側壁	6 中 間	1.085	113	*****	45170
		1.086	113	*****	45166
	S7 下 τ 点	0.255	-9217	23523	49040
	7 下ハンチ点	0.240	-11866	***	49530
	8,S8 下 端部	0.090	-16284	31998	50229


曲げモーメント(N·m) せん断力(N)

(2) 設計荷重時 1 (CASE-3)

部材	新何里时 I (CASI	距 離 x(m)	曲げモーメント M (N·m)	せん断力 S (N)	[/単位長] 軸 力 N(N)
	3, S3 端 部	0.090	-19935	73037	21565
頂版	2 ハンチ始点	0.240	-9642	***	21565
	S2 τ 点	0.255	***	58017	***
	1 中 央	1. 240	25348	0	21565
	 9,S9 端 部	0.090	-23537	83202	31998
底版	10 ハンチ始点	0.240	-11811	***	31998
	S10 τ 点	0.255	***	66092	***
	11 中 央	1. 240	28048	0	31998
	 4,S4 上 端部	2.090	-19935	-21565	73037
	5 上ハンチ点	1.940	-16872	***	73737
	S5 上 τ 点	1.925	***	-17509	***
側壁	6 中 間	1.085	-7140	0	78143
	S7 下 τ 点	0.255	***	23523	***
	7 下ハンチ点	0.240	-19119	***	82503
	8, S8 下 端部	0.090	-23537	31998	83202


曲げモーメント(N·m) せん断力(N)

(3) 設計荷重時 2 (CASE-4)

部材	照査点	距 離 x (m)	曲げモーメント M (N・m)	せん断力 S(N)	[/単位長] 軸 力 N(N)
	3,S3 端 部	0.090	-13609	40064	27015
頂版	2 ハンチ始点	0.240	-7962	***	27015
	S2 τ 点	0.255	***	31825	***
	1 中央	1. 240	11231	0	27015
	 9,S9 端 部	0.090	-17210	50229	37448
底版	10 ハンチ始点	0.240	-10132	***	37448
	S10 τ 点	0.255	***	39900	***
	11 中 央	1. 240	13932	0	37448
	 4,S4 上 端部	2. 090	-13609	-27015	40064
	5 上ハンチ点	1.940	-9784	***	40764
	S5 上 τ 点	1.925	***	-21684	***
側壁	6 中 間	1.086	2157	0	45166
	S7 下 τ 点	0.255	***	27698	*****
	7 下ハンチ点	0.240	-12031	***	49530
	8, S8 下 端部	0.090	-17210	37448	50229

曲げモーメント(N·m) せん断力(N)

 (N/mm^2)

 (N/mm^2)

4 プレストレスの計算

4.1 荷重による曲げ応力度

 $\sigma\,\text{m}\,=\,\pm M/Z\,=\,\pm 6\,\times\,M/(\,b\times\,T^2)\,\times\,1000$

 ここに、
 σ m : 曲げ応力度
 (N/mm²)

 M : 曲げモーメント
 (kN・m)

 Z : 断面係数
 (cm³)

 B : 部材幅
 (cm)

 T : 部材厚
 (cm)

4.2 有効プレトレス

(1) 有効係数 η

$$\eta = \sigma \operatorname{pe} / \sigma \operatorname{pt}$$

$$\sigma \operatorname{pt} = \operatorname{Pt} / \operatorname{Ap} \times 1/100$$

$$\sigma \operatorname{pe} = \sigma \operatorname{pt} - \triangle \sigma \operatorname{pcs} - \triangle \sigma \operatorname{pr}$$

$$\triangle \sigma \operatorname{pcs} = [\operatorname{n} \times \phi \times (\sigma \operatorname{cd} + \sigma \operatorname{cpt}) + \operatorname{Ep} \times \varepsilon \operatorname{cs}] / [1 + \operatorname{n} \times (\sigma \operatorname{cpt} / \sigma \operatorname{pt}) \times (1 + \phi / 2)]$$

$$\sigma \operatorname{cpt} = \operatorname{Np} \times \operatorname{Pt} \times (1 / \operatorname{Ac} + \operatorname{ep}^2 / 1) \times 10$$

$$\triangle \sigma \operatorname{pr} = \gamma \times \sigma \operatorname{pt}$$

ここに、 σpt : 有効引張応力度 (N/mm²) Pt : 緊張作業直後のPC鋼棒引張応力度 (kN)

Ap :1本当りのPC鋼棒断面積 (cm²)

Δσpcs : コンクリートの乾燥収縮及びクリープによるPC鋼棒の応力度の減少量

n : 弹性係数比 (Ep / Ec = 6.45)

Ep : PC鋼棒の弾性係数 $(2.0 \times 10^5 \text{ N/mm}^2)$ Ec : コンクリートの弾性係数 $(3.1 \times 10^4 \text{ N/mm}^2)$

 ϕ : クリープ係数 (= 2.5)

σcd : 考えているPC鋼棒位置における永久

荷重によるコンクリートの圧縮応力度 (N/mm²)

σ cpt : 考えている P C 鋼棒位置における緊張 作業直後のプレストレス

 ϵcs : コンクリートの乾燥収縮度 (= 200 μ)

σpt : 緊張作業直後のPC鋼棒の引張応力度 (N/mm²)
 Np : m当りPC鋼棒本数 (本)
 Ac : コンクリート断面積 (cm²)
 ep : PC鋼棒偏心量 (cm)
 I : 断面二次モーメント (cm⁴)

 $\triangle \sigma pr$: PC鋼棒のリラクセーションによる

引張応力度の減少量 (N/mm²)

 γ : PC鋼棒の見掛けのリラクセーション(= 0.03)

(2) 有効プレストレス σce

 $\sigma ce = Np \times Pt \times \eta \times (1 / Ac \pm ep / Z) \times 10$ (N/mm²)

ここに、 Np : m当りPC鋼棒本数 (本)

Pt : 引張作業直後 (kN)

η : 有効係数

 Ac
 : コンクリート断面積
 (cm²)

 ep
 : PC鋼棒偏心量
 (cm)

 Z
 : 断面係数
 (cm³)

4.3 合成応力度

 $\sigma c = \sigma m + \sigma ce + N / Ac \times 10$

 ここに、σc : 合成応力度 (N/mm²)

 σm : 曲げ応力度 (N/mm²)

 σce : 有効プレストレス (N/mm²)

 N : 軸方向圧縮力 (kN)

 Ac : コンクリート断面積 (cm²)

4.4 引張鉄筋量の計算

(1) 曲げモーメント

引張鉄筋は次の荷重作用に対して、引張応力の作用する区間に配置する。

荷重の組み合わせ (永久荷重 + 変動荷重) × 1.35

(2) 配置鉄筋量

配置鉄筋量は次の1)、2)のうちいずれか大きい値以上とする。

1) の値

 $As1 = Tc / \sigma sa \times 10$ $= b \times x \times | \sigma c1 | / (2 \times \sigma sa)$ $\therefore x = | \sigma c1 | / (\sigma c2 + | \sigma c1 |) \times T$

2) の値

 $As2 = 0.005 \times b \times x$

ここに、 As1 : 引張鉄筋断面積 (cm^2) As2 : 引張鉄筋断面積 (cm^2)

引張応力の作用する

コンクリート面積の 0.5%

Tc : 断面に生じる引張力の合力 (kN) σ sa : 鉄筋の許容引張応力度 (N/mm²) σ c1 : 引張縁に生じる引張応力度 (N/mm²) σ c2 : 圧縮縁に生じる圧縮応力度 (N/mm²)

b : 部材幅 (cm) x : 引張縁から中立軸までの距離 (cm) T : 部材厚 (cm)

(cm)

4.5 斜引張応力度の計算

斜引張応力度は次式を用いて、断面図心位置における値を求める。

T : 部材厚

4.6 破壊安全度の検討

(1) 曲げモーメント

1) 安全係数

破壊に対する安全度の検討に使用する安全係数を次のように定める。

材料強度に関するもの ----- 1.0 荷重作用に関するもの (永久荷重作用) ---- 1.3 または 1.7 (変動荷重作用) ---- 2.5 または 1.7

2) 終局荷重作用時の曲げモーメント

終局荷重作用時の曲げモーメントは、次に示す荷重作用の大きい方とする。

$$Md = 1.3 \times M1 + 2.5 \times M2$$
 (kN·m)
 $Md = 1.7 \times M1 + 1.7 \times M2$ (kN·m)

ここに、 Md : 終局荷重作用時曲げモーメント

M1 : 永久荷重による曲げモーメントM2 : 変動荷重による曲げモーメント

(設計荷重時 - 死荷重時)

(2) 曲げ破壊安全度

$$Sf = Mu / Md > 1.0$$

$$\begin{aligned} \text{Mu} &= 0.7 \times (0.93 \times \text{Ap} \times \sigma \, \text{pud} \times \text{dp}) \\ &\times \left[1 - \text{Ap} / (1.7 \times \text{b} \times \text{dp}) \right. \\ &\times 0.93 \times \sigma \, \text{pud} / \sigma \, \text{ck} \right] \times 1/1000 \\ &+ \text{As} \times \sigma \, \text{syd} \times \text{ds} \times \left[1 - \text{As} / (1.7 \times \text{b} \times \text{ds}) \right. \\ &\times \sigma \, \text{syd} / \sigma \, \text{ck} \right] \times 1/1000 \end{aligned}$$

ここに、 Mu : 破壊抵抗曲げモーメント $(kN \cdot m)$ Ap : PC鋼棒断面積 (cm^2) As : 鉄筋の断面積 (cm^2) σ pud : P C 鋼棒引張強度 (N/mm^2) σ syd : 引張鉄筋の降伏点応力度 (N/mm^2) : コンクリートの設計基準強度 (N/mm^2) σck dp: 圧縮縁からPC鋼棒図心迄の距離 (cm) ds : 圧縮縁から鉄筋図心迄の距離 (cm) b :部材幅 (cm)

Sf : 曲げ破壊安全度

終局つり合い鋼材比が配置される引張鋼材比より大であることを確認する。

$$P pb = 0.68 \times \epsilon cu / (\epsilon cu + \epsilon sp) \\ \times \sigma ck / (0.93 \times \sigma pud) + \\ 0.68 \times \epsilon cu / (\epsilon cu + \epsilon s) \\ \times \sigma ck / \sigma syd$$
$$P pd = Ap / (b \times dp) + As / (b \times ds) \\ \times \sigma syd / (0.93 \times \sigma pud) \times ds / dp < P pb$$

ここに、 Ppb : 終局つり合い鋼材比

Ppd : 引張鋼材比

ε cu : コンクリートの終局ひずみ (0.0035) ε sp : P C 鋼棒の終局ひずみ (0.015) σ pud : P C 鋼棒の引張強さ (N/mm²)

εs : 引張鉄筋の降伏ひずみ (σ syd/Es)

5 PC部材の検討

5.1 頂版

5.1.1 断面諸元

位	置	部材幅	部材厚	断面積	断面二次モーメント	中立軸	断面係数
		(cm)	(cm)	(cm^2)	(cm^4)	(cm)	(cm^3)
端	部	100.00	23.00	2300.0	101391.67	11.50	8816.67
ハンチュ	始点	100.00	18.00	1800.0	48600.00	9.00	5400.00
τ	点	100.00	18.00	1800.0	48600.00	9.00	5400.00
中	央	100.00	18.00	1800.0	48600.00	9.00	5400.00

5.1.2 使用PC鋼棒

位置	径	本数	断面積	設計引張力	偏心量	モーメント方向
		(本/m)	(cm^2)	(N/本)	(cm)	(部材軸より)
端部	φ 21	2. 50	3.464	290000	1.50	外側
ハンチ始点	ϕ 21	2.50	3.464	290000	-1.00	外側
τ 点	ϕ 21	2. 50	3.464	290000	-1.00	外側
中 央	$\phi 21$	2.50	3.464	290000	1.00	内 側

5.1.3 有効係数

計算	項/	σ pt	σcpt	σ cd	$\triangle \sigma pcs$	$\triangle \sigma pr$	σpe	有効係数	ケース
位	置				(N/mm^2)				
(1)	死者	前重時 (最大圧縮)						
端	部	837. 18	3. 31	-0.19	85. 50	25. 12	726. 57	0.868	3
ハンチュ	始点	837. 18	4. 18	0.14	102.30	25. 12	709.77	0.848	3
τ	点	837. 18	4. 18	0.07	101. 21	25. 12	710.86	0.849	3
	央	837. 18	4. 18	-0. 25	96. 36	25. 12	715. 71	0.855	3
(2)	死荷	苛重時 (最大引張)						
端	部	837. 18	3. 31	-0.19	85. 50	25. 12	726.57	0.868	3
ハンチュ	始点	837. 18	4. 18	0.14	102.30	25. 12	709.77	0.848	3
τ	点	837. 18	4. 18	0.07	101. 21	25. 12	710.86	0.849	3
	央	837. 18	4. 18	-0. 25	96. 36	25. 12	715. 71	0.855	3
(3)	設計	荷重時	(最大圧縮)						
端	部	837. 18	3. 31	-0.19	85. 50	25. 12	726. 57	0.868	3
ハンチュ	始点	837. 18	4. 18	0.07	101. 23	25. 12	710.83	0.849	1
τ	点	837. 18	4. 18	0.04	100.75	25. 12	711.31	0.850	1
	央	837. 18	4. 18	-0.10	98.60	25. 12	713.46	0.852	1
(4)	設計	荷重時	(最大引張)						
端	部	837. 18	3. 31	-0.19	85. 50	25. 12	726. 57	0.868	3
ハンチュ	始点	837. 18	4. 18	0.07	101. 23	25. 12	710.83	0.849	1
τ	点	837. 18	4. 18	0.04	100.75	25. 12	711.31	0.850	1
中	央	837. 18	4. 18	-0.10	98.60	25. 12	713.46	0.852	1

5.1.4 合成応力度

位 置	曲げ応力度	N/Ac	有効プレストレス	合成応力度	ケース
	σ m		σсе	σс	
	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	
(1) 死荷	f重時 (最大圧縮)				
端部	1. 44	0.09	1. 67	3. 20	3
ハンチ始点	1.30	0. 12	4. 55	5. 98	3
中 央	2. 25	0. 12	2. 30	4.67	3
			$\sigma c < 15.0$	CHECK	OK
(2) 死荷	f重時 (最大引張)				
端部	-1.44	0.09	3. 81	2.46	3
ハンチ始点	-1.30	0.12	2. 28	1.09	3
中 央	-2.25	0.12	4. 59	2.46	3
			σt > 0.0	CHECK	OK
(3) 設計	├荷重時 (最大圧縮	音)			
端部	2.26	0.09	1. 67	4. 02	3
ハンチ始点	2. 03	0. 08	4. 56	6. 67	1
中央	5. 77	0. 08	2. 29	8. 13	1
			$\sigma c < 15.0$	CHECK	
(4) =====	# 4	=)			
	├荷重時 (最大引張 。。。		0.01	1 64	
端部	-2. 26	0.09	3. 81	1. 64	3
ハンチ始点	-2. 03	0.08	2. 28	0.33	1
中央	-5. 77	0.08	4. 58	-1. 11	1
			σ t $>$ -1.5	CHECK	OK

5.1.5 引張鉄筋量

位 置	曲げモーメント	合成応	力度	X	Тс	引張鈞	ド筋量	ケース
		外側	内側			As1	As2	
	$(kN \cdot m/m)$	(N/m	m^2)	(cm)	(kN)	(cm^2)	/m)	
端部	-26. 913	0.88	4.84	3. 5	0.0	0.000	0.000	3
ハンチ始点	-14.819	-0.36	7.41	0.8	1.5	0.093	0.415	1
中 央	42.032	-3.10	10.18	4. 2	65. 2	4.073	2.102	1

----- 使用鉄筋及び鉄筋量 -----

	径	本数	径	本数	断面積	半	引定
外 側	D 10 —	10	D 0 —	- 0	$3.567 \text{ cm}^2/\text{m}$	> As1	or As2
内 側	D 13 —	10	D 0 —	- 0	$6.335 \text{ cm}^2/\text{m}$	> As1	or As2

5.1.6 斜引張応力度

位	置	部材幅	断面一次	軸力	せん断力	Ре	σс'	τ	σi	ケース
		(cm)	モーメント (cm³)	(kN)	(kN)	(kN)		(N/mm^2)		
端	部	100.0	6612	21. 565	73. 037	629. 21	2.83	0.48	-0.078	3
τ	点	100.0	4050	21.565	58.017	615.60	3.54	0.48	-0.065	3
						σi	> -1	00	CHECK ()K

5.1.7 破壊安全度の検討

終局荷重時の曲げモーメント

位	置	M1	M2	1. 3M1+2. 5M2	1.7 (M1+M2)	Md	ケース
		$(kN \cdot m)$					
端	部	-6. 105	-13. 755	-42. 323	-33. 762	-42. 323	1
ハンチ女	治点	-3.604	-7.373	-23. 118	-18.661	-23. 118	1
中	央	4.896	26. 238	71.961	52.929	71. 961	1

位	置	Аp	As	dр	d s	Ppb	Ppd	Mu	Sf	ケース
		(cm^2/m)	(cm^2/m)	(cm)	(cm)			$(kN \cdot m)$		
端	部	8.660	3. 567	13. 0	19. 5	0.069	0.007	100.40	2.4	1
ハンチ女	台点	8.660	3. 567	8.0	14. 5	0.069	0.012	60.47	2.6	1
中	央	8.660	6. 335	10.0	14.5	0.069	0.010	85. 83	1.2	1

Ppb > Ppd Sf > 1.0 CHECK OK

5.2 底版

5.2.1 断面諸元

位	置	部材幅	部材厚	断面積	断面二次モーメント	中立軸	断面係数
		(cm)	(cm)	(cm^2)	(cm^4)	(cm)	(cm^3)
端	部	100.00	23.00	2300.0	101391.67	11.50	8816.67
ハンチュ	始点	100.00	18.00	1800.0	48600.00	9.00	5400.00
τ	点	100.00	18.00	1800.0	48600.00	9.00	5400.00
中	央	100.00	18.00	1800.0	48600.00	9.00	5400.00

5.2.2 使用PC鋼棒

位置	径	本数	断面積	設計引張力	偏心量	モーメント方向
		(本/m)	(cm^2)	(N/本)	(cm)	(部材軸より)
端部	φ 21	2. 50	3.464	290000	2.00	外側
ハンチ始点	ϕ 21	2.50	3.464	290000	-0.50	外 側
τ 点	ϕ 21	2.50	3.464	290000	-0.50	外 側
中央	ϕ 21	2.50	3.464	290000	0.50	内 側

5.2.3 有効係数

計算	項/	σpt	σcpt	σ cd	$\triangle \sigma pcs$	$\triangle \sigma pr$	σpe	有効係数	ケース
位	置				(N/mm^2)				
(1)	死布	f重時 (:	最大圧縮)						
端	部	837. 18	3. 44	-0.32	85. 20	25. 12	726.87	0.868	3
ハンチ	始点	837.18	4.07	0.09	100.04	25. 12	712.03	0.851	3
τ	点	837.18	4.07	0.05	99. 36	25. 12	712.71	0.851	3
中	央	837. 18	4. 07	-0.15	96. 31	25. 12	715. 76	0.855	3
(2)	死布	前重時 (z	最大引張)						
端	部	837.18	3. 44	-0.32	85. 20	25. 12	726.87	0.868	3
ハンチ	始点	837. 18	4.07	0.09	100.04	25. 12	712.03	0.851	3
τ	点	837. 18	4.07	0.05	99. 36	25. 12	712.71	0.851	3
中	央	837. 18	4. 07	-0. 15	96. 31	25. 12	715. 76	0.855	3
(3)	設計	荷重時	(最大圧縮)						
端	部	837. 18	3. 44	-0.32	85. 19	25. 12	726.87	0.868	3
ハンチ	始点	837.18	4.07	0.09	100.04	25. 12	712.03	0.851	3
τ	点	837. 18	4. 07	0.05	99. 36	25. 12	712.71	0.851	4
中	央	837. 18	4. 07	-0.15	96. 31	25. 12	715. 76	0.855	3
(4)	設計	荷重時	(最大引張)						
端	部	837. 18	3.44	-0.32	85. 19	25. 12	726.87	0.868	3
ハンチ	始点	837. 18	4.07	0.09	100.04	25. 12	712.03	0.851	3
τ	点	837. 18	4.07	0.05	99.36	25. 12	712.71	0.851	4
中	央	837. 18	4. 07	-0.15	96. 31	25. 12	715. 76	0.855	3

5.2.4 合成応力度

位	置	曲げ応力度	N/Ac	有効プレストレス	合成応力度	ケース
		σ m		σсе	σс	
		(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	
(1)) 死	活重時 (最大圧縮)				
端	部	1.85	0. 14	1. 31	3. 29	3
ハンチな	始点	1.70	0.18	4.00	5.88	3
中	央	2.75	0.18	2.87	5.80	3
				$\sigma c < 15.0$	СНЕСК	OK
(2)) 死	E荷重時 (最大引張)				
端	部	-1.85	0. 14	4. 16	2.46	3
ハンチな	始点	-1.70	0. 18	2.85	1.33	3
中	央	-2.75	0. 18	4.02	1.44	3
				σt > 0.0	CHECK	OK
(3))設	計荷重時 (最大圧縮)				
端	部	2.67	0. 14	1. 31	4. 12	3
ハンチな	始点	2. 19	0. 18	4.00	6.36	3
中	央	5. 19	0. 18	2.87	8.24	3
				$\sigma c < 15.0$	CHECK	OK
(4)) 設	*計荷重時 (最大引張)				
端	部	-2.67	0. 14	4. 16	1.63	3
ハンチな	始点	-2. 19	0.18	2.85	0.85	3
中	央	-5. 19	0.18	4.02	-1.00	3
				σt > -1.5	CHECK	OK

5.2.5 引張鉄筋量

位	置	曲げモーメント	合成応	力度	X	Тс	引張鈞	特筋量	ケース
			外側	内側			As1	As2	
		$(kN \cdot m/m)$	(N/m)	m^2)	(cm)	(kN)	$(cm^2$	/m)	
端	部	-31. 775	0.75	5. 10	2.9	0.0	0.000	0.000	3
ハンチ	始点	-15.945	0.14	7. 19	0.3	0.0	0.000	0.000	3
中	央	37.865	-2.75	10.12	3. 9	53.0	3.315	1.925	3

----- 使用鉄筋及び鉄筋量 -----

	径	本数	径	本数	断面積		判定	
外 側	D 10 —	10	D 0 —	- 0	$3.567 \text{ cm}^2/\text{m}$	>	Asl or	As2
内 側	D 13 —	10	D 0 —	- 0	6.335 cm^2/m	>	As1 or	As2

5.2.6 斜引張応力度

位	置	部材幅	断面一次	軸力	せん断力	Ре	σс'	τ	σi	ケース
		(cm)	モーメント (cm³)	(kN)	(kN)	(kN)		(N/mm^2)		
端	部	100.0	6612	31. 998	83. 202	629.47	2.88	0.54	-0.099	3
τ	点	100.0	4050	31.998	66.092	617.21	3.61	0.55	-0.082	3
						σi	> -1.0	00	CHECK ()K

5.2.7 破壊安全度の検討

終局荷重時の曲げモーメント

位	置	M1	M2	1. 3M1+2. 5M2	1.7 (M1+M2)	Md	ケース
		(kN⋅m)	$(kN \cdot m)$	$(kN \cdot m)$	$(kN \cdot m)$	$(kN \cdot m)$	
端	部	-16. 284	-7. 253	-39. 302	-40.013	-40.013	3
ハンチュ	始点	-9.205	-2.606	-18.482	-20.079	-20.079	3
中	央	7. 597	17.831	54. 455	43. 229	54. 455	1

位	置	Аp	As	dр	d s	Ppb	Ppd	Mu	Sf	ケース
		(cm^2/m)	(cm^2/m)	(cm)	(cm)			$(kN \cdot m)$		
端	部	8.660	3. 567	13. 5	19.5	0.069	0.007	103.86	2.6	3
ハンチな	始点	8.660	3. 567	8.5	14.5	0.069	0.011	63.93	3.2	3
中	央	8.660	6. 335	9.5	14.5	0.069	0.011	82. 36	1.5	1

Ppb > Ppd Sf > 1.0 CHECK OK

6 断面力集計表

各ケースより断面力の最大値を抽出する。

M	:	部材モーメント	$(kN \cdot m)$
S	:	せん断力	(kN)
N	:	軸力	(kN)
e	:	M/N偏心位量	(cm)
С	:	部材中心軸と鉄筋間距離	(cm)
Ms	:	軸力を考慮した曲げモーメント	$(kN \cdot m)$

 $Ms = N \times (e + c) / 100$ (kN·m)

但し、軸力は

頂版端部軸力 = 側壁上端部せん断力 底版端部軸力 = 側壁下端部せん断力 側壁上端部軸力 = 頂版端部せん断力 側壁下端部軸力 = 底版端部せん断力

とし、側壁中間点の軸力は側壁自重による軸力を考慮する。

「 /単位長]

部材	点	M	N	е	С	Ms	CASE
		$(kN \cdot m)$	(kN)	(cm)	(cm)	$(kN \cdot m)$	M
	端部	*****	*****	*****	*****	*****	**
頂版	ハンチ始点	*****	*****	*****	*****	*****	**
	中 央	*****	*****	*****	*****	*****	**
	端部	*****	*****	*****	*****	*****	**
底版	ハンチ始点	*****	*****	*****	*****	*****	**
	中 央	*****	*****	****	*****	*****	**
	上端部	-19.860	60. 290	32. 94	8.00	24. 683	1
	上心が点	-17. 808	60. 989	29. 20	5. 50	21. 163	1
側壁	中間	-9.609	66. 095	14. 54	5. 50	13. 245	1
	下ハンチ点	-19. 119	82. 503	23. 17	5. 50	23.657	3
	下端部	-23. 537	83. 202	28. 29	8.00	30. 193	3

注1) CASE のMは、曲げモーメント抽出ケースを示す。

注2) ***** 表示は、PC部材。

7 必要有効高および必要鉄筋量

7.1 必要有効高

 ここに、 Ms : 軸力を考慮した曲げモーメント
 (kN·m/m)

 b : 単位長
 (cm)

 d' : 鉄筋かぶり
 (cm)

 h : 必要部材厚
 (cm)

 n : ヤング係数比
 (15)

7.2 必要鉄筋量

鉄筋の曲げ引張応力度が許容値(σ sa)に達する場合の必要鉄筋量(As)

$$As = [\sigma c / 2 \times s - N / (b \times da)] / \sigma sa \times b \times da$$

$$\sigma c^3 + [3 \times \sigma sa / (2 \times n) - 3 \times N \times (e + c) / (b \times da^2)] \times \sigma c^2$$
 $- 6 \times N \times (e + c) / (n \times b \times da^2) \times \sigma sa \times \sigma c$
 $- 3 \times N \times (e + c) / (n^2 \times b \times da^2) \times \sigma sa^2 = 0$
上式を解いて $\sigma c を求める。また $da = T - d$ 、とする。
 $s = n \times \sigma c / (n \times \sigma c + \sigma sa)$$

部材	点	Ms	必要有効高	必要部材厚	部材厚	必要鉄筋量
		$(kN \cdot m/m)$	d (cm)	d+d' (cm)	T (cm)	$As(cm^2/m)$
	端部	*****	*****	*****	*****	*****
頂版	ハンチ始点	*****	*****	*****	*****	*****
	中 央	*****	*****	*****	*****	*****
	端部	*****	*****	*****	*****	*****
底版	ハンチ始点	*****	*****	*****	*****	******
	中 央	*****	*****	*****	****	*****
	上端部	24. 683	8. 75	12. 25	23. 00	5. 044
	上ハンチ点	21. 163	8. 11	11.61	18. 00	6. 588
側壁	中間	13. 245	6. 41	9. 91	18. 00	2. 219
	下ハンチ点	23.657	8. 57	12.07	18.00	6. 545
	下端部	30. 193	9.68	13. 18	23. 00	5. 690

 $\mathrm{d}+\mathrm{d}$ ' < T CHECK OK

8 配筋及び実応力度

実応力度は、次式により計算する。

8.1 コンクリート及び鉄筋

$$\sigma c = N/\{b \times x/2 - n \times As/x \times (c + T/2 - x)\}$$

$$\sigma s = n \times \sigma c/x \times (c + T/2 - x)$$

 ここに、N:軸力
 (kN)

 b:部材幅
 (cm)

 T:部材厚
 (cm)

 c:部材中心軸と鉄筋間距離
 (cm)

 As:主鉄筋断面積
 (cm²)

 x:中心軸。次の3次元方程式より求める。
 (cm)

 x³-3 × (T/2-e)×x²
 (cm)

 +6×n×As/b×(e+c)×x

 $+6 \times n \times As/b \times (e + c) \times x$ $-6 \times n \times As/b \times (c + T/2)$ $\times (e + c) = 0$

e : 偏心位量 (M / N) (cm)

配 筋(製品当り)

 頂版内側
 頂版外側
 底版内側
 底版外側
 側壁内側
 側壁外側

 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 16 - 5

 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 0 - 0
 D 13 - 5

部材	点	部材幅	使用鉄筋量	X	実	芯力度(N/m	\mathbf{m}^2)
		b (cm)	$As(cm^2/m)$	(cm)	σс	σs	σs'
	端部	****	*****	*****	*****	*****	****
頂版	ハンチ始点	****	*****	*****	*****	****	****
	中 央	****	*****	*****	*****	****	****
	端部	*****	*****	*****	*****	*****	****
底版	ハンチ始点	****	*****	*****	*****	*****	****
	中 央	****	*****	*****	*****	*****	****
	上端部	100.00	8. 133	7. 184	4. 02	103. 3	0.0
	上ハンチ点	100.00	8. 133	5.777	5.83	132.0	0.0
側壁	中間	100.00	8. 133	6.890	3. 15	52.2	0.0
	下ハンチ点	100.00	8. 133	6.045	6.27	131.5	0.0
	下端部	100.00	8. 133	7.443	4.77	115.8	0.0

 $\sigma c < \sigma ca \quad \sigma s < \sigma sa$ CHECK OK

9 せん断力に対する検討

9.1 せん断力照査点の断面力と最大値抽出

部材	断面力	CASE-1	CASE-2	CASE-3	CASE-4	CASE-5	CASE-6	CASE-7	CASE-8
	S	56. 641	14. 095	58. 017	31.825				
頂版	M			-3. 226					
τ点	N			21. 565					
	最大			0					
	S	55. 966	22. 170	66. 092	39. 900				
底版	M			-4. 502					
τ点	N			31. 998					
	最大			0					
	S	-12. 383	-14. 168	-17. 509	-21.683				
側壁上	M				-7. 387				
τ点	N				41. 253				
	最大				0				
	S	13. 619	20. 183	23. 523	27. 698				
側壁下	M	_	_		-8. 916	_			
τ点	N				49.040				
	最大				0				

ここに、S:せん断力(kN)、M:モーメント(kN・m)、N:軸力(kN)を示す。

9.2 せん断応力度の検討

コンクリートのせん断応力度は、平均せん断応力度として算出する。

$$au = \frac{S}{b \cdot d} \times 10 < Ce \cdot Cpt \cdot CN \cdot au$$
 ここに、 S : せん断力 (kN) d : 有効高さ (cm) b : 部材幅 (cm)

各せん断応力度照査位置の許容せん断応力度は、以下の補正係数を乗じて求める。

① 部材断面の有効高 d の影響

次表に示す部材断面の有効高さに関する補正係数(Ce)をτaに乗じる。

有効高さ (m)	0.3以下	1. 0	3. 0	5. 0	10.0以上
補正係数(Ce)	1. 4	1.0	0.7	0.6	0.5

② 軸方向引張鉄筋比の影響

次表に示す軸方向引張鉄筋比に関する補正係数(Cpt) を τ a に乗じる。 鉄筋比は中立軸よりも引張側にある軸方向鉄筋の断面積の総和を b d で除して求める。

引張鉄筋比(%)	0.1	0.2	0.3	0.5	1.0以上
補正係数(Cpt)	0.7	0.9	1.0	1. 2	1. 5

③ 軸方向圧縮力の影響

軸方向圧縮力が大きな部材の場合、次式により計算される軸方向圧縮力による補正係数 (CN) を τ a に乗じる。

CN = 1 + Mo/M $Mo = \{(Pe+N) \cdot Z/Ac + Pe \cdot ep\}$ triangle 2

ここに、CN:軸方向力による補正係数

Mo: 有効プレストレス力及び軸方向力によりコンクリートの応力度が引張縁で

0となる曲げモーメント(kN・m)

M:断面に作用する曲げモーメント(kN・m)

N:断面に作用する軸方向圧縮力(kN)

Pe: PC鋼棒に作用するm当りの全有効引張力(kN)

Z:図心軸に関する断面係数(m3)

Ac: 部材断面積(m2)

ep: PC鋼棒の偏心量<引張縁側+/圧縮縁側->(m)

照査位置	Т	ď'	d	Се	引張鉄筋		Pt	Cpt
	(cm)	(cm)	(cm)		径-本数	As(cm2)	(%)	
頂版 τ 点	18.0	3. 5	14.5	1.400	D10-5	3. 567	0. 246	0. 946
底版 τ 点	18.0	3.5	14.5	1.400	D10-5	3. 567	0. 246	0.946
側壁上 τ 点	18.0	3. 5	14.5	1. 400	D16-2.5	8. 133	0. 561	1. 237
					D13-2.5			
側壁下 τ 点	18.0	3.5	14.5	1. 400	D16-2.5	8. 133	0.561	1. 237
					D13-2.5			

照査位置	M	Pe	N	Ac	Z	ер	Мо	Cn
	(kN • m)	(kN)	(kN)	(m2)	(m4)	(m)	(kN • m)	
頂版τ点	-3. 226	615.6	21. 565	0.180	0.00540	-0.01	12. 959	2.000
底版 τ 点	-4. 502	617. 2	31. 998	0. 180	0.00540	-0.01	19. 476	2.000
側壁上 τ 点	-7. 387	0.0	41. 253	0. 180	0.00540	0.00	1. 238	1. 168
側壁下 τ 点	-8. 916	0.0	49.040	0.180	0.00540	0.00	1. 471	1. 165

照査位置	τа	補正係数			補正
		Се	Cpt	Cn	τа
頂版τ点	0. 270	1.400	0.946	2.000	0. 715
底版 τ 点	0. 270	1.400	0. 946	2.000	0. 715
側壁上 τ 点	0.270	1.400	1. 237	1. 168	0. 546
側壁下 τ 点	0.270	1.400	1. 237	1. 165	0. 545

照査位置	せん断力	有効高	効高 せん断応力度	
	S	d $ au$		τа
	(kN)	(cm)	(N/mm2)	(N/mm2)
頂版 τ 点	58. 017	14. 5	0.400	0.715
底版 τ 点	66. 092	14. 5	0. 456	0.715
側壁上τ点	21. 684	14. 5	0. 150	0. 546
側壁下τ点	27. 698	14. 5	0. 191	0.545

 $\tau < \tau$ a CHECK OK