$(H)3700 \times (B)2500 \times (L)2000$

2010 年 1月

千葉窯業株式会社

目 次

§ 1	設計条件	1
§ 2	一般形状寸法図	2
§ 3	計算結果	3
§ 4	設計荷重	6
§ 5	安定計算	10
§ 6	たて壁の部材断面設計	16
§ 7	かかと版(つけ根)の部材断面設計	21
§ 8	かかと版(中間部)の部材断面設計	26

- §1 設計条件
- 1.1 設計条件

(1) 擁壁形式 プレキャストL型擁壁

(2) 基礎形式 直接基礎

(3) 擁壁高さ H = 3.700 (m)

(4) 土 圧 試行くさび法による土圧

(5) 地表面載荷重 q = 10.0 (kN/m²)

(6) 単位体積重量 製品 c = 24.5 (kN/m³)

- 1.2 土質条件
- (1) 擁壁背面の裏込め土

せん断抵抗角 = 30.00 (°) 単位体積重量 s = 19.0 (kN/m³)

(2) 支持地盤の定数

擁壁底版と基礎地盤の間の摩擦係数 μ = 0.577

" の粘着力 C = 0.0 (kN/m²)

許容地盤反力度 qa = 150.97 (kN/m²) 以上必要

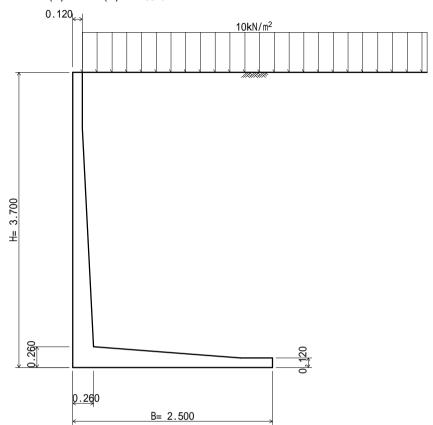
1.3 安定条件

(1) 滑動に対する検討滑動安全率Fs1.50(2) 転倒に対する検討偏心距離|e|1/6 B

転倒安全率 Fs 1.50

- 1.4 材料強度及び許容応力度
- (1) コンクリート

(2) 鉄筋


許容引張応力度 sa = 160 (N/mm²)

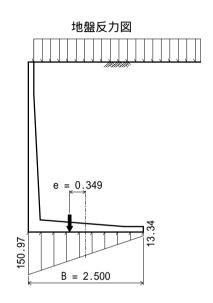
- 1.5 参考文献
 - 一、道路土工 擁壁工指針 (社)日本道路協会

§2 一般形状寸法図

2.1 一般図

製品名:CLP (H)3700×(B)2500標準

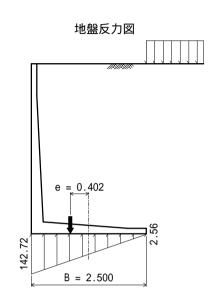
§3 計算結果


3.1 安定計算結果

安定計算は、滑動・転倒・支持の安定に対して検討を行った。

3.1.1 載荷重あり

(1) 安定計算


鉛直荷重	水平荷重	偏心距離	転 倒	滑 動	地盤反	 力度	
V	Н	е	安全率	安全率	q ₁	q_2	判定
(kN)	(kN)	(m)	Fs	Fs	(kN/r	n²)	
205.39	55.69	0.349	3.70	2.13	150.97	13.34	0.K.
許	容値	0.417	1.50	1.50			

3.1.2 載荷重なし

(1) 安定計算

鉛直荷重	水平荷重	偏心距離	転 倒	滑 動	地盤反	 力度	
V	Н	е	安全率	安全率	q₁	q_2	判定
(kN)	(kN)	(m)	Fs	Fs	(kN/m²)	
181.59	55.69	0.402	3.24	1.88	142.72	2.56	0.K.
許	容値	0.417	1.50	1.50			

3.2 断面計算結果

3.2.1 たて壁の断面計算

部 材	I	Į E	1	中間部	つけ根
たて段	立7	b	(mm)	1000	1000
たて壁	部 材	d	(mm)	80	220
	断	As	(mm²)	D19 - 6.5	D19 - 6.5
	面		(""")	1862	1862
	Щ	Х	(mm)	44.5	86.4
	断	曲げモ- M	-メント (N・mm)	0.76×10^{6}	49.29 × 10 ⁶
	面 力 力		J (N)	3.28 × 10 ³	42.97 × 10³
		コンクリートの 曲げ圧縮応力度 -		0.52	5.97
		N/mm²)	ca	10.00	10.00
	鉄筋の曲げ引き	鉄筋の 曲げ引張応力度 -		6.3	138.4
		N/mm²)	sa	160	160
	コンクリートの せん断応力度 (N/mm²)			0.04	0.20
			ca	0.45	0.45

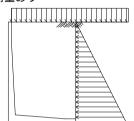
3.2.2 底版の断面計算

部	材	I	頁 E	■	かかと つけ根	かかと 中間
底版		. b		(mm)	1000	1000
忧拟		部 **	d	(mm)	220	80
		材 断 面	As	(mm²)	D19 - 6.5 1862	D19 - 6.5 1862
İ		山山	Х	(mm)	86.4	44.5
		断面	曲げモ- M	-メント (N・mm)	49.29 × 10 ⁶	4.88 × 10 ⁶
		力	面 サん断力 S		14.04 × 10 ³	22.88 × 10³
			ノートの 宿応力度	С	5.97	3.37
			N/mm²)	ca	10.00	10.00
		鉄筋の曲げる	厚応力度	s	138.4	40.2
		曲げ引張応力度 (N/mm²)		sa	160	160
	せん断応		コンクリートの せん断応力度 (N/mm²) ca		0.06	0.29

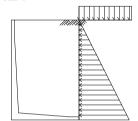
§4 設計荷重

擁壁に作用する荷重は、以下の荷重を考える。

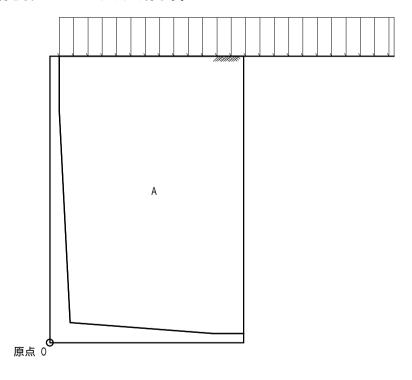
- 自 重
- ・載 荷 重
- ・土 圧


4.1 荷重の組合せ

以下の組合せについて設計を行う。


常 時 自重(+載荷重)+土圧

4.1.1 荷重の組合せ一覧



4.2 荷重の計算

擁壁に作用する荷重の、鉛直荷重√、水平荷重H、および、原点0に対する作用位置 (x,y)の計算を奥行き長 1.000 m あたりで行なう。

4.2.1 自重

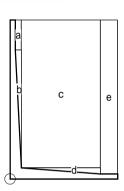
(1) 躯体

1) 製品

記		幅	高さ	 面積	重心	位 置	断面一次モ	ミーメント
				Α	Х	У	A·x	А·у
号		(m)	(m)	(m^2)	(m)	(m)	(m³)	(m³)
		2.500×	3.700=	9.250	1.250	1.850	11.5625	17.1125
а	-	0.140×	0.700=	-0.098	0.190	3.350	-0.0186	-0.3283
b	-1/2×	0.140×	2.740=	-0.192	0.213	2.087	-0.0409	-0.4007
С	-	1.840×	3.440=	-6.330	1.180	1.980	-7.4694	-12.5334
d	-1/2×	1.840×	0.140=	-0.129	1.487	0.213	-0.1918	-0.0275
е	-	0.400×	3.580=	-1.432	2.300	1.910	-3.2936	-2.7351
合	計			1.069			0.5482	1.0875

体積

$$Vo = A \cdot L = 1.069 \times 1.000 = 1.069 (m^3)$$


荷重

$$V = Vo \cdot c = 1.069 \times 24.5 = 26.19 (kN)$$

作用位置

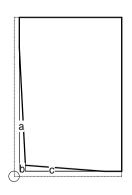
$$x = \frac{A \cdot x}{A} = \frac{0.5482}{1.069} = 0.513 \text{ (m)}$$
 $y = \frac{A \cdot y}{A} = \frac{1.0875}{1.069} = 1.017 \text{ (m)}$

$$y = \frac{A \cdot y}{A} = \frac{1.0875}{1.069} = 1.017 \text{ (m)}$$

(2) 載荷土

1) 裏込め土

記		幅	高さ	面積	重心	位 置	断面一次刊	Ξーメント
1				Α	Х	у	A • x	Α·y
号		(m)	(m)	(m^2)	(m)	(m)	(m³)	(m³)
		2.380×	3.580=	8.520	1.310	1.910	11.1612	16.2732
а	-1/2×	0.140×	2.740=	-0.192	0.167	1.173	-0.0321	-0.2252
b	-	0.140×	0.140=	-0.020	0.190	0.190	-0.0038	-0.0038
С	-1/2×	1.840×	0.140=	-0.129	0.873	0.167	-0.1126	-0.0215
合	計			8.179			11.0127	16.0227


$$Vo = A \cdot L = 8.179 \times 1.000 = 8.179 (m^3)$$

$$V = Vo \cdot s = 8.179 \times 19.0 = 155.40 (kN)$$

作用位置

$$x = \frac{A \cdot x}{A} = \frac{11.0127}{8.179} = 1.346 \text{ (m)}$$

$$y = \frac{A \cdot y}{A} = \frac{16.0227}{8.179} = 1.959 \text{ (m)}$$

4.2.2 載荷重

地表面載荷重のうち擁壁上に載るものを鉛直荷重として考慮する。

荷重

$$V = q \cdot b \cdot L = 10.0 \times 2.380 \times 1.000 = 23.80 \text{ (kN)}$$

作用位置

$$x = B - \frac{b}{2} = 2.500 - \frac{2.380}{2} = 1.310(m)$$

4.2.3 土圧

土圧の計算は、試行くさび法により行う。また、土圧は三角形分布するものとする。

主働土圧合力

$$Pa = \frac{W \cdot \sin(-)}{\cos(---)}$$

ここに、

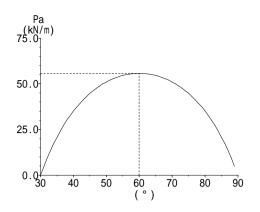
Pa : 主働土圧合力 (kN/m) W : 土くさびの重量 (kN/m)

· エヾこりの<u>=</u>重 、 : すべり角 (°)

: 裏込め土のせん断抵抗角 (°)

: 壁面摩擦角 (°)

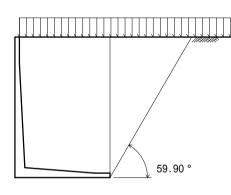
: 土圧作用面と鉛直面のなす角 (°)


鉛直荷重・水平荷重

$$V = Pa \cdot sin(+) \cdot L$$

 $H = Pa \cdot cos(+) \cdot L$

ここに、


V , H : 鉛直荷重,水平荷重 (kN)

L: 擁壁の奥行き (計算幅) L = 1.000 (m)

最大主働土圧合力

Pa =
$$\frac{96.84 \times \sin(59.90 - 30.00)}{\cos(59.90 - 30.00 - 0.00 - 0.00)}$$
$$= 55.69 \text{ (kN/m)}$$

	Pa	W
64.00	54.966	81.49
63.00	55.278	85.12
62.00	55.507	88.83
61.00	55.640	92.60
60.00	55.685	96.45
* 59.90	55.685	96.84
59.00	55.642	100.38
58.00	55.500	104.38
57.00	55.273	108.48
56.00	54.958	112.68
55.00	54.544	116.97

鉛直荷重

$$V = 55.69 \times \sin(0.00 - 0.00) \times 1.000 = 0.00 (kN)$$

水平荷重

$$H = 55.69 \times \cos(0.00 - 0.00) \times 1.000 = 55.69 (kN)$$

作用位置

$$x = 2.500 \text{ (m)}$$

 $y = \frac{3.700}{3} = 1.233 \text{ (m)}$

§5 安定計算

算出した荷重を集計して、以下の安定計算を行う。

5.1 計算方法

1) 滑動に対する検討

滑動に対する安全率は次式により照査を行う。

Fs =
$$\frac{$$
滑動に対する抵抗力 $}{$ 滑動力 $}=\frac{V \cdot tan + C \cdot B \cdot L}{H}$ Fsa

ここに、

Fs : 滑動安全率

Fsa : 滑動安全率の許容値 Fsa = 1.50

V : 底版下面における全鉛直荷重 (kN)

H : 水平荷重 (kN)

tan : 擁壁底版と基礎地盤の間の摩擦係数

tan = 0.577

 C
 : 擁壁底版と基礎地盤の間の粘着力
 C = 0.0 (kN/m²)

 B
 : 擁壁の底版幅
 B = 2.500 (m)

 L
 : 擁壁の奥行き(計算幅)
 L = 1.000 (m)

2) 転倒に対する検討

転倒に対する安全率は次式により照査を行う。

$$\mathsf{Fs} = \frac{\mathsf{Mr}}{\mathsf{Mo}} \qquad \mathsf{Fsa}$$

ここに、

Fs :安全率

Mr : 抵抗モーメント (kN・m) Mo : 転倒モーメント (kN・m)

Fsa: 転倒安全率の許容値 Fsa = 1.50

つま先から合力の作用点までの距離dおよび、合力の作用点の底版中央からの偏心距離e は次式で求める。

$$d = \frac{Mr - Mo}{V}$$

$$e = \frac{B}{2} - d$$

ここに、

V : 底版下面における全鉛直荷重 (kN) Mr : つま先まわりの抵抗モーメント (kN・m) Mo : つま先まわりの転倒モーメント (kN・m)

B : 擁壁の底版幅 B = 2.500 (m)

転倒に対する安定条件として、偏心距離eは次式を満足するものとする。

$$|e|$$
 $\frac{1}{6}$ B

3) 支持に対する検討

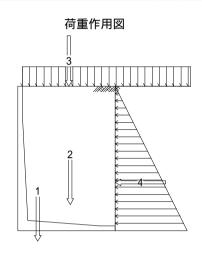
地盤反力度は次式により求める。

$$\begin{array}{lll} d &=& \frac{\text{Mr - Mo}}{\text{V}} \;, & e &=& \frac{B}{2} \; - \; d \\ \\ e &>& \frac{B}{6} \; \sigma \ \ \, & \\ \\ |e| &=& \frac{B}{6} \; \sigma \ \ \, & \\ \\ |e| &=& \frac{B}{6} \; \sigma \ \ \, & \\ \\ |e| &=& \frac{B}{6} \; \sigma \ \ \, & \\ \\ |e| &=& \frac{C \cdot \text{V}}{B \cdot \text{L}} \; (1 \; \pm \; \frac{6 \cdot e}{B}) \\ \\ |e| &=& \frac{C \cdot \text{V}}{3 \cdot (B - d) \cdot \text{L}} \end{array}$$

ここに、

q₁,q₂ : 地盤反力度 (kN/m²) Mr : 抵抗モーメント (kN・m) Mo : 転倒モーメント (kN・m)

V : 鉛直荷重 (kN)


B : 擁壁の底版幅 B = 2.500 (m)

L : 擁壁の奥行き(計算幅) L = 1.000 (m) e : 合力の作用点の底版中央からの偏心距離 (m) d : つま先から合力の作用点までの距離 (m)

5.2 計算結果

5.2.1 載荷重あり

		荷	重	作用	位置	モーメ	ント
No	荷重名	鉛直 V	水平 H	Х	у	抵抗 Mr	転倒 Mo
		(kN)	(kN)	(m)	(m)	(kN⋅m)	(kN⋅m)
1	躯体	26.19		0.513	1.017	13.44	
2	裏込め土	155.40		1.346	1.959	209.17	
3	載荷重	23.80		1.310	3.700	31.18	
4	土圧		55.69	2.500	1.233		68.67
	合 計	205.39	55.69			253.79	68.67

1) 滑動に対する安定

Fs =
$$\frac{\text{V} \cdot \mu + \text{c} \cdot \text{B} \cdot \text{L}}{\text{H}} = \frac{205.39 \times 0.577 + 0.0 \times 2.500 \times 1.000}{55.69}$$

= 2.13 Fsa = 1.5

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

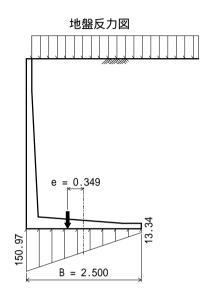
$$Fs = \frac{Mr}{Mo} = \frac{253.79}{68.67} = 3.70$$
 $Fsa = 1.50$

よって、転倒安全率は安定条件を満足している。

つま先から合力Rの作用点までの距離
$$d = \frac{\text{Mr - Mo}}{\text{V}} = \frac{253.79 - 68.67}{205.39} = 0.901 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

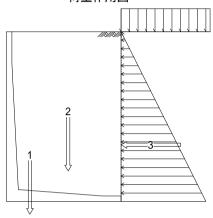
e =
$$\frac{B}{2}$$
 - d = $\frac{2.500}{2}$ - 0.901 = 0.349 (m)
|e| = 0.349 (m) $\frac{1}{6} \cdot B = 0.417$ (m)


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

$$\begin{array}{l} q_1 \\ q_2 \end{array} = \frac{V}{B \cdot L} \; (1 \pm \frac{6 \cdot e}{B}) = \frac{205.39}{2.500 \; \times \; 1.000} \; \times \; (\; 1 \; \pm \; \frac{6 \; \times \; 0.349}{2.500} \;) \\ = \; \{ \begin{array}{l} 150.97 \; (k\text{N/m}^2) \\ 13.34 \; (k\text{N/m}^2) \end{array} \end{array}$$


よって、上記の値以上の支持力が必要である。

5.2.2 載荷重なし

		荷	重	作用	位置	モーン	イント
No	荷重名	鉛直 V	水平 H	х	У	抵抗 Mr	転倒 Mo
		(kN)	(kN)	(m)	(m)	(kN⋅m)	(kN⋅m)
1	躯体	26.19		0.513	1.017	13.44	
2	裏込め土	155.40		1.346	1.959	209.17	
3	土圧		55.69	2.500	1.233		68.67
	合 計	181.59	55.69			222.61	68.67

荷重作用図

1) 滑動に対する安定

Fs =
$$\frac{\text{V} \cdot \mu + \text{c} \cdot \text{B} \cdot \text{L}}{\text{H}}$$
 = $\frac{181.59 \times 0.577 + 0.0 \times 2.500 \times 1.000}{55.69}$ = 1.88 Fsa = 1.5

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$Fs = \frac{Mr}{Mo} = \frac{222.61}{68.67} = 3.24$$
 $Fsa = 1.50$

よって、転倒安全率は安定条件を満足している。

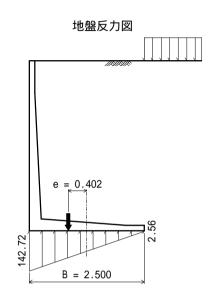
つま先から合力Rの作用点までの距離

$$d = \frac{Mr - Mo}{V} = \frac{222.61 - 68.67}{181.59} = 0.848 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

$$e = \frac{B}{2} - d = \frac{2.500}{2} - 0.848 = 0.402 \text{ (m)}$$

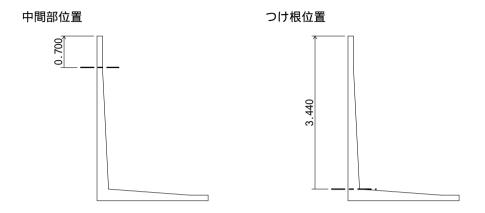
 $|e| = 0.402 \text{ (m)} \frac{1}{6} \cdot B = 0.417 \text{ (m)}$


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

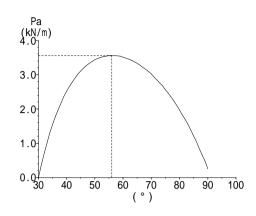
$$\begin{array}{l} q_1 \\ q_2 \end{array} = \frac{V}{B \cdot L} \; (1 \pm \frac{6 \cdot e}{B}) \; = \frac{181.59}{2.500 \; \times \; 1.000} \; \times \; (\; 1 \; \pm \; \frac{6 \; \times \; 0.402}{2.500} \;) \\ = \; \{ \begin{array}{c} 142.72 \; (k\text{N/m}^2) \\ 2.56 \; (k\text{N/m}^2) \end{array} \end{array}$$


よって、上記の値以上の支持力が必要である。

§6 たて壁の部材断面設計

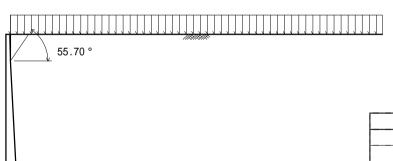
たて壁は、底版との接合部を固定端とする片持版で設計する。

6.1 断面検討位置

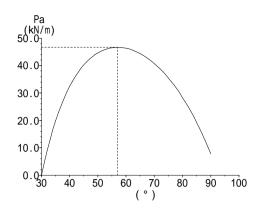


6.2 荷重の計算

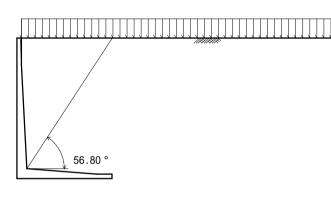
たて壁に作用する荷重は、以下のものを考慮し、たて壁自重および土圧の鉛直分力は無視する。


6.2.1 土圧

1) 中間部


最大主働土圧合力

Pa =
$$\frac{8.20 \times \sin(55.70 - 30.00)}{\cos(55.70 - 30.00 - 20.00 - 2.92)}$$
$$= 3.56 \text{ (kN/m)}$$


	Pa	W
60.00	3.512	6.97
59.00	3.535	7.25
58.00	3.549	7.53
57.00	3.555	7.81
56.00	3.556	8.10
* 55.70	3.560	8.20
55.00	3.552	8.40
54.00	3.539	8.70
53.00	3.524	9.02
52.00	3.499	9.34
51.00	3.471	9.68

2) つけ根

最大主働土圧合力

Pa =
$$\frac{103.22 \times \sin(56.80 - 30.00)}{\cos (56.80 - 30.00 - 20.00 - 2.92)}$$
$$= 46.65 \text{ (kN/m)}$$

	Pa	W
61.00	46.054	88.53
60.00	46.303	91.90
59.00	46.488	95.35
58.00	46.604	98.88
57.00	46.643	102.48
* 56.80	46.646	103.22
56.00	46.609	106.17
55.00	46.493	109.94
54.00	46.299	113.81
53.00	46.013	117.76
52.00	45.652	121.85

$$H = Pa \cdot cos(+) \cdot L$$

ここに、

L : 擁壁の奥行き (計算幅) L = 1.000 (m)

	土圧力	摩擦角	傾斜角	水平荷重	作用位置
	Pa			Н	у
	(kN/m)	(°)	(°)	(kN)	(m)
中間部	3.56	20.00	2.92	3.28	0.233
つけ根	46.65	20.00	2.92	42.97	1.147

6.3 設計断面力

6.3.1 中間部

せん断力

$$S = H = 3.28 (kN)$$

曲げモーメント

$$M = H \cdot y = 3.28 \times 0.233$$

= 0.76 (kN \cdot m)

6.3.2 つけ根

せん断力

$$S = H = 42.97 (kN)$$

曲げモーメント

$$M = H \cdot y = 42.97 \times 1.147$$

= 49.29 (kN \cdot m)

6.4 実応力度の計算

(1) 中間部

単鉄筋長方形断面で計算を行う。

有効幅 b = 1000 (mm) 有効高さ d = 80 (mm) 鉄筋量 As = D19 - 6.5 = 18.62 (cm²) = 1862 (mm²) 1000

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \}$$

$$= \frac{15 \times 1862}{1000} \times \{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 80}{15 \times 1862}} \}$$

$$= 44.5 \text{ (mm)}$$

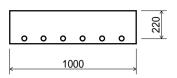
設計断面力

実応力度

$$C = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 0.76 \times 10^{6}}{1000 \times 44.5 \times (80 - \frac{44.5}{3})}$$

$$= 0.52 (N/mm^{2}) \qquad ca = 10.00 (N/mm^{2}) \qquad 0.K.$$

$$S = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{0.76 \times 10^{6}}{1862 \times (80 - \frac{44.5}{3})}$$


$$= 6.3 (N/mm^{2}) \qquad sa = 160 (N/mm^{2}) \qquad 0.K.$$

$$= \frac{S}{b \cdot d} = \frac{3.28 \times 10^{3}}{1000 \times 80}$$

$$= 0.04 (N/mm^{2}) \qquad a_{1} = 0.45 (N/mm^{2}) \qquad 0.K.$$

(2) つけ根

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \}$$

$$= \frac{15 \times 1862}{1000} \times \{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 220}{15 \times 1862}} \}$$

$$= 86.4 \text{ (mm)}$$

設計断面力

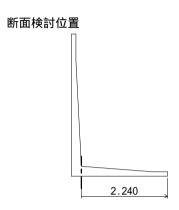
実応力度

$$C = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 49.29 \times 10^{6}}{1000 \times 86.4 \times (220 - \frac{86.4}{3})}$$

$$= 5.97 \text{ (N/mm}^{2}) \qquad ca = 10.00 \text{ (N/mm}^{2}) \qquad 0.K.$$

$$S = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{49.29 \times 10^{6}}{1862 \times (220 - \frac{86.4}{3})}$$

$$= 138.4 \text{ (N/mm}^{2}) \qquad sa = 160 \text{ (N/mm}^{2}) \qquad 0.K.$$


$$= \frac{S}{b \cdot d} = \frac{42.97 \times 10^{3}}{1000 \times 220}$$

$$= 0.20 \text{ (N/mm}^{2}) \qquad a_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0.K.$$

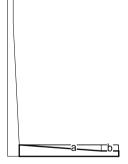
§7 かかと版(つけ根)の部材断面設計

かかと版(つけ根)は、たて壁との接合部を固定端とする片持版として設計する。

7.1 荷重の計算

かかと版に作用する荷重としては、以下のものを考慮する。

(1) かかと版自重


記		幅	高さ	面積	重心位置	断面一次
				Α	x	モーメント
号		(m)	(m)	(m^2)	(m)	A • x (m³)
		2.240×	0.260=	0.582	1.120	0.6518
а	-1/2×	1.840×	0.140=	-0.129	1.227	-0.1583
b	-	0.400×	0.140=	-0.056	2.040	-0.1142
合	計			0.397		0.3793

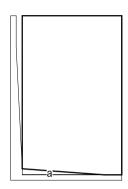
作用位置

$$x = \frac{A \cdot x}{A} = \frac{0.3793}{0.397} = 0.955 \text{ (m)}$$

せん断力

$$M = S \cdot x = 9.73 \times 0.955 = 9.29 (kN \cdot m)$$

(2) かかと版上の載荷土


記		幅	高さ	面積	重心位置	断面一次
				Α	x	モーメント
号		(m)	(m)	(m^2)	(m)	$A \cdot x (m^3)$
		2.240×	3.580=	8.019	1.120	8.9813
а	-1/2×	1.840×	0.140=	-0.129	0.613	-0.0791
合	計			7.890		8.9022

作用位置

$$x = \frac{A \cdot x}{A} = \frac{8.9022}{7.890} = 1.128 \text{ (m)}$$

せん断力

$$M = S \cdot x = 149.91 \times 1.128 = 169.10 (kN \cdot m)$$

(3) 地表面載荷重

荷重強度

$$q = 10.00 (kN/m^2)$$

せん断力

$$S = q \cdot b \cdot L = 10.00 \times 2.240 \times 1.000 = 22.40 (kN)$$

作用位置

$$x = 1.120 (m)$$

曲げモーメント

$$M = S \cdot x = 22.40 \times 1.120 = 25.09 (kN \cdot m)$$

(4) 地盤反力度

1) 載荷重あり

『 安定計算 』の結果より

$$q_1 = 150.97 \text{ (kN/m}^2\text{)}$$

 $q_2 = 13.34 \text{ (kN/m}^2\text{)}$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{I_2}{B} = 13.34 + (150.97 - 13.34) \times \frac{2.240}{2.500}$$

= 136.66 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot I_2 \cdot L}{2} = \frac{(136.66 + 13.34) \times 2.240 \times 1.000}{2}$$
$$= 168.00 (kN)$$

作用位置

$$x = \frac{I_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{2.240}{3} \times \frac{2 \times 13.34 + 136.66}{13.34 + 136.66}$$
$$= 0.813 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 168.00 \times 0.813 = 136.58 (kN \cdot m)$$

2) 載荷重なし

『 安定計算 』の結果より

$$q_1 = 142.72 (kN/m^2)$$

$$q_2 = 2.56 (kN/m^2)$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{l_2}{B} = 2.56 + (142.72 - 2.56) \times \frac{2.240}{2.500}$$

= 128.14 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot I_2 \cdot L}{2} = \frac{(128.14 + 2.56) \times 2.240 \times 1.000}{2}$$
$$= 146.38 \text{ (kN)}$$

作用位置

$$x = \frac{I_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{2.240}{3} \times \frac{2 \times 2.56 + 128.14}{2.56 + 128.14}$$
$$= 0.761 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 146.38 \times 0.761 = 111.40 (kN \cdot m)$$

7.2 設計断面力

かかと版つけ根の曲げモーメントは たて壁つけ根の曲げモーメントを超えないものとする。

1) 載荷重あり

		せん断力	曲げモーメント
No	荷 重 名	S	М
		(kN)	(kN⋅m)
1	かかと版自重	9.73	9.29
2	かかと版上の載荷土	149.91	169.10
3	地盤反力	-168.00	-136.58
4	自動車荷重	22.40	25.09
	合 計	14.04	66.90

たて壁つけ根の曲げモーメント $Mo = 49.29 (kN \cdot m) < M$ より断面計算に用いる曲げモーメント M = Mo とする。

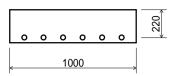
2) 載荷重なし

		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN⋅m)
1	かかと版自重	9.73	9.29
2	かかと版上の載荷土	149.91	169.10
3	地盤反力	-146.38	-111.40
	合 計	13.26	66.99

たて壁つけ根の曲げモーメント $Mo = 49.29 (kN \cdot m) < M$ より断面計算に用いる曲げモーメント M = Mo とする。

実応力度計算には、以下の最大断面力を用いる。

せん断力


S = 14.04 (kN)

曲げモーメント

 $M = 49.29 (kN \cdot m)$

7.3 実応力度の計算

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \}$$

$$= \frac{15 \times 1862}{1000} \times \{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 220}{15 \times 1862}} \}$$

$$= 86.4 \text{ (mm)}$$

設計断面力

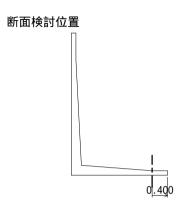
実応力度

$$C = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 49.29 \times 10^{6}}{1000 \times 86.4 \times (220 - \frac{86.4}{3})}$$

$$= 5.97 \text{ (N/mm}^{2}) \qquad ca = 10.00 \text{ (N/mm}^{2}) \qquad 0.K.$$

$$S = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{49.29 \times 10^{6}}{1862 \times (220 - \frac{86.4}{3})}$$

$$= 138.4 \text{ (N/mm}^{2}) \qquad sa = 160 \text{ (N/mm}^{2}) \qquad 0.K.$$


$$= \frac{S}{b \cdot d} = \frac{14.04 \times 10^{3}}{1000 \times 220}$$

$$= 0.06 \text{ (N/mm}^{2}) \qquad a_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0.K.$$

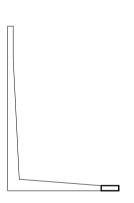
§8 かかと版(中間部)の部材断面設計

かかと版(中間部)は、下の指定位置を固定端とする片持版として設計する。

8.1 荷重の計算

かかと版に作用する荷重としては、以下のものを考慮する。

(1) かかと版自重

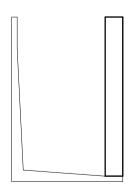

面積

$$A = b \cdot h = 0.400 \times 0.120 = 0.048 \text{ (m}^2\text{)}$$

せん断力

S = A・ c・L =
$$0.048 \times 24.5 \times 1.000 = 1.18$$
 (kN) 曲げモーメント

$$M = S \cdot x = 1.18 \times 0.200 = 0.24 (kN \cdot m)$$


(2) かかと版上の載荷土

面積

$$A = b \cdot h = 0.400 \times 3.580 = 1.432 (m^2)$$

せん断力

$$M = S \cdot x = 27.21 \times 0.200 = 5.44 (kN \cdot m)$$

(3) 地表面載荷重

荷重強度

$$q = 10.00 (kN/m^2)$$

せん断力

$$S = q \cdot b \cdot L = 10.00 \times 0.400 \times 1.000 = 4.00 (kN)$$

作用位置

$$x = 0.200 (m)$$

曲げモーメント

$$M = S \cdot x = 4.00 \times 0.200 = 0.80 (kN \cdot m)$$

(4) 地盤反力度

1) 載荷重あり

『 安定計算 』の結果より

$$q_1 = 150.97 (kN/m^2)$$

$$q_2 = 13.34 (kN/m^2)$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{l_2}{B} = 13.34 + (150.97 - 13.34) \times \frac{0.400}{2.500}$$

= 35.36 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(35.36 + 13.34) \times 0.400 \times 1.000}{2}$$
$$= 9.74 \text{ (kN)}$$

作用位置

$$x = \frac{I_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.400}{3} \times \frac{2 \times 13.34 + 35.36}{13.34 + 35.36}$$
$$= 0.170 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 9.74 \times 0.170 = 1.66 (kN \cdot m)$$

2) 載荷重なし

『 安定計算 』の結果より

$$q_1 = 142.72 (kN/m^2)$$

 $q_2 = 2.56 (kN/m^2)$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{I_2}{B} = 2.56 + (142.72 - 2.56) \times \frac{0.400}{2.500}$$

= 24.99 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(24.99 + 2.56) \times 0.400 \times 1.000}{2}$$
$$= 5.51 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.400}{3} \times \frac{2 \times 2.56 + 24.99}{2.56 + 24.99}$$
$$= 0.146 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 5.51 \times 0.146 = 0.80 (kN \cdot m)$$

8.2 設計断面力

かかと版つけ根の曲げモーメントは

たて壁つけ根の曲げモーメントを超えないものとする。

1) 載荷重あり

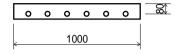
		せん断力	曲げモーメント
No	荷重名	S	M
İ		(kN)	(kN⋅m)
1	かかと版自重	1.18	0.24
2	かかと版上の載荷土	27.21	5.44
3	地盤反力	-9.74	-1.66
4	自動車荷重	4.00	0.80
	合 計	22.65	4.82

2) 載荷重なし

		せん断力	曲げモーメント
No	荷重名	S	M
		(kN)	(kN⋅m)
1	かかと版自重	1.18	0.24
2	かかと版上の載荷土	27.21	5.44
3	地盤反力	-5.51	-0.80
	合 計	22.88	4.88

実応力度計算には、以下の最大断面力を用いる。

せん断力


$$S = 22.88 (kN)$$

曲げモーメント

$$M = 4.88 (kN \cdot m)$$

8.3 実応力度の計算

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \}$$

$$= \frac{15 \times 1862}{1000} \times \{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 80}{15 \times 1862}} \}$$

$$= 44.5 \text{ (mm)}$$

設計断面力

実応力度

$$C = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 4.88 \times 10^{6}}{1000 \times 44.5 \times (80 - \frac{44.5}{3})}$$

$$= 3.37 \text{ (N/mm}^{2}) \qquad ca = 10.00 \text{ (N/mm}^{2}) \qquad 0.K.$$

$$S = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{4.88 \times 10^{6}}{1862 \times (80 - \frac{44.5}{3})}$$

$$= 40.2 \text{ (N/mm}^{2}) \qquad sa = 160 \text{ (N/mm}^{2}) \qquad 0.K.$$

$$= \frac{S}{b \cdot d} = \frac{22.88 \times 10^{3}}{1000 \times 80}$$

$$= 0.29 \text{ (N/mm}^{2}) \qquad a_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0.K.$$