CLP (H) $2900 \times$ (B) $2000 \times$ (L) 2000

2011 年 4月

千葉窯業株式会社

目 次

§ 1	設計条件	1
§ 2	一般形状寸法図	2
§ 3	計算結果	3
§ 4	設計荷重	6
§ 5	安定計算	10
§ 6	たて壁の部材断面設計	15
§ 7	かかと版(つけ根)の部材断面設計	20
§ 8	かかと版(中間部)の部材断面設計	25

- §1 設計条件
- 1.1 設計条件

(1) 擁壁形式 プレキャストL型擁壁

(2) 基礎形式 直接基礎

(3) 擁壁高さ H = 2.900 (m)

(4) 土 圧 試行くさび法による土圧

(5) 地表面載荷重 $q = 10.0 (kN/m^2)$

(6) 単位体積重量 製品 $\gamma c = 24.5$ (kN/m³)

- 1.2 土質条件
- (1) 擁壁背面の裏込め土

せん断抵抗角 ϕ = 30.00 (°) 単位体積重量 γ s = 19.0 (kN/m^3)

(2) 支持地盤の定数

擁壁底版と基礎地盤の間の摩擦係数 μ = 0.577

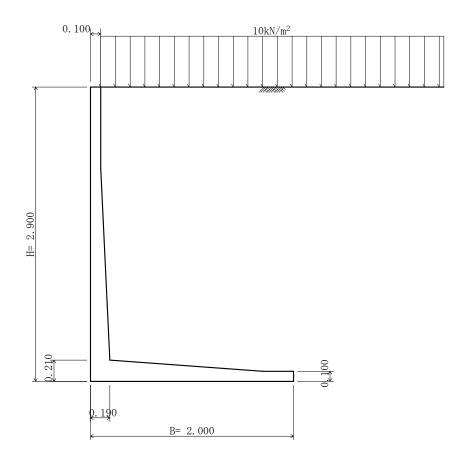
 σ の粘着力 $C=0.0~(kN/m^2)$

許容地盤反力度 $qa = 120.60 (kN/m^2)$ 以上必要

- 1.3 安定条件
- (1) 滑動に対する検討 滑動安全率 Fs ≥ 1.50
 (2) 転倒に対する検討 偏心距離 | e | ≤ 1/6 B
 転倒安全率 Fs ≥ 1.50
- 1.4 材料強度及び許容応力度
- (1) コンクリート

設計基準強度 $\sigma \, ck = 30 \, (N/mm^2)$ 許容圧縮応力度 $\sigma \, ca = 10.00 \, (N/mm^2)$ 許容せん断応力度 $\tau \, a = 0.45 \, (N/mm^2)$

(2) 鉄筋


許容引張応力度 σ sa = 160 (N/mm^2)

- 1.5 参考文献
 - 一、道路土工 一 擁壁工指針 (社)日本道路協会

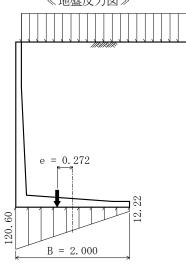
§ 2 一般形状寸法図

2.1 一般図

製品名: CLP (H) 2900×(B) 2000

§3 計算結果

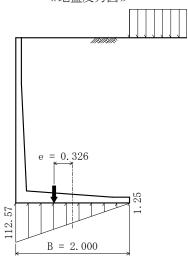
3.1 安定計算結果


安定計算は、滑動・転倒・支持の安定に対して検討を行った。

3.1.1 載荷重あり

(1) 安定計算

鉛直荷重	水平荷重	偏心距離	転 倒	滑動	地盤反	力度	
Σ V	ΣΗ	е	安全率	安全率	\mathbf{q}_1	\mathbf{q}_2	判定
(kN)	(kN)	(m)	Fs	Fs	(kN/m	2)	
132.82	36. 30	0. 272	3. 75	2. 11	120.60	12. 22	O. K.
許	容 値	0. 333	1.50	1.50			



3.1.2 載荷重なし

(1) 安定計算

Γ	鉛直荷重	水平荷重	偏心距離	転 倒	滑動	地盤反	力度	
	\sum V	Σ H	е	安全率	安全率	\mathbf{q}_1	\mathbf{q}_2	判定
	(kN)	(kN)	(m)	Fs	Fs	(kN/m²	2)	
	113.82	36. 30	0. 326	3. 18	1.81	112. 57	1.25	O. K.
	許	容 値	0. 333	1.50	1.50			

3.2 断面計算結果

3.2.1 たて壁の断面計算

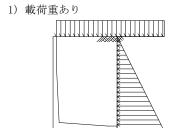
部材	Į	頁	1	中間部	つけ根	
ナーアロウ	47	b	(mm)	1000	1000	
たて壁	部材	d	(mm)	60	150	
	断		As	(mm ²)	D19 - 6.5	D19 - 6.5
	面面	ns .	(IIIII)	1862	1862	
	Щ	X	(mm)	36. 3	67. 8	
	断	曲げモー M	-メント (N・mm)	1.05×10^{6}	24.78×10^{6}	
	面 力	せん断力 S	(N)	3.94×10^{3}	27.62×10^{3}	
		リートの	σс	1.21	5. 74	
		(N/mm²) σca		10.00	10.00	
	鉄筋の曲が引き	長広力度	σs	11.8	104. 5	
	曲げ引張応力度 (N/mm²)		σsa	160	160	
		コンクリートの τ せん断応力度 (N/mm²) τ ca		0.07	0. 18	
				0. 45	0.45	

3.2.2 底版の断面計算

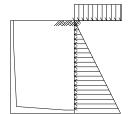
部材	Į	頁 [1	かかと つけ根	かかと 中間		
底版	部	b	(mm)	1000	1000		
	材	d	(mm)	170	60 D10 C 5		
	断一	As	(mm^2)	D19 - 6.5 1862	D19 - 6.5 1862		
	面	X	(mm)	73. 4	36. 3		
	断面	曲げモー M	-メント (N・mm)	24.78 × 10 ⁶	2.19×10^{6}		
	力	せん断フ S	(N)	8.41×10^{3}	13.82×10^{3}		
		リートの σ c 縮応力度		4. 64	2. 52		
	1	(N/mm²)		10.00	10.00		
	鉄筋の	鉄筋の 曲げ引張応力度 (N/mm²)		1		91. 4	24. 6
				160	160		
	コンクリせん断原	1ンクリートの τ		0.05	0. 23		
	I	い/J/支 [N/mm²)	τса	0.45	0. 45		

§4 設計荷重

擁壁に作用する荷重は、以下の荷重を考える。

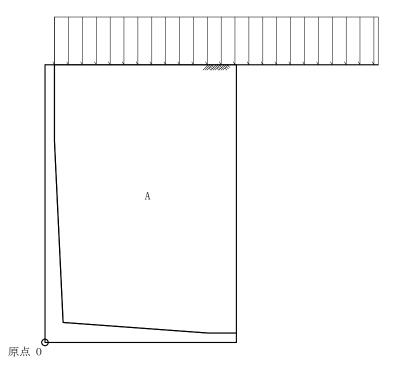

- 自 重
- ・載 荷 重
- · 土 圧

4.1 荷重の組合せ


以下の組合せについて設計を行う。

常 時 自重(+載荷重)+土圧

4.1.1 荷重の組合せ一覧



4.2 荷重の計算

擁壁に作用する荷重の、鉛直荷重V、水平荷重H、および、原点0に対する作用位置 (x, y)の計算を奥行き長 1.000~m あたりで行なう。

4.2.1 自重

(1) 躯体

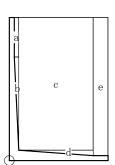
1) 製品

記		幅	高さ	面積	重 心	位 置	断面一次日	モーメント
				A	X	У	A • x	А•у
号		(m)	(m)	(m^2)	(m)	(m)	(m ³)	(m ³)
		$2.000 \times$	2.900=	5.800	1.000	1.450	5. 8000	8. 4100
a	_	$0.090 \times$	0.800=	-0.072	0.145	2.500	-0.0104	-0. 1800
b	$-1/2 \times$	$0.090 \times$	1.890=	-0.085	0.160	1.470	-0.0136	-0. 1250
С	-	$1.510 \times$	2.690=	-4.062	0.945	1.555	-3. 8386	-6. 3164
d	$-1/2 \times$	$1.510 \times$	0.110=	-0.083	1. 197	0.173	-0.0994	-0. 0144
е	_	$0.300 \times$	2.800=	-0.840	1.850	1.500	-1. 5540	-1. 2600
合	計			0.658			0. 2840	0. 5142

体積

$$V_0 = \Sigma A \cdot L = 0.658 \times 1.000 = 0.658 \text{ (m}^3\text{)}$$

荷重


$$V = V_0 \cdot \gamma c = 0.658 \times 24.5 = 16.12 \text{ (kN)}$$

作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{0.2840}{0.658} = 0.432 \text{ (m)}$$

$$y = \frac{\sum A \cdot y}{\sum A} = \frac{0.5142}{0.658} = 0.781 \text{ (m)}$$

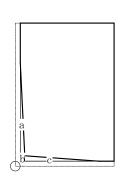
$$y = \frac{\sum A \cdot y}{\sum A} = \frac{0.5142}{0.658} = 0.781$$
 (m)

(2) 載荷土

1) 裏込め土

記		幅	高さ	面積	重 心	位 置	断面一次コ	メント
				A	X	у	A • x	А•у
号		(m)	(m)	(m^2)	(m)	(m)	(m ³)	(m ³)
		1.900×	2.800=	5. 320	1.050	1.500	5. 5860	7. 9800
а	-1/2×	0.090×	1.890=	-0.085	0.130	0.840	-0. 0111	-0.0714
b	_	0.090×	0.110=	-0.010	0.145	0. 155	-0.0015	-0.0016
С	$-1/2 \times$	1.510×	0.110=	-0.083	0.693	0. 137	-0. 0575	-0.0114
合	計			5. 142			5. 5159	7. 8956

Vo =
$$\Sigma A \cdot L = 5.142 \times 1.000 = 5.142 \text{ (m}^3\text{)}$$


荷重

$$V = V_0 \cdot \gamma_S = 5.142 \times 19.0 = 97.70 \text{ (kN)}$$

作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{5.5159}{5.142} = 1.073$$
 (m)

$$y = \frac{\sum A \cdot y}{\sum A} = \frac{7.8956}{5.142} = 1.536$$
 (m)

4.2.2 載荷重

地表面載荷重のうち擁壁上に載るものを鉛直荷重として考慮する。

荷重

$$V = q \cdot b \cdot L = 10.0 \times 1.900 \times 1.000 = 19.00 \text{ (kN)}$$

作用位置

$$x = B - \frac{b}{2} = 2.000 - \frac{1.900}{2} = 1.050 (m)$$

4.2.3 土圧

土圧の計算は、試行くさび法により行う。また、土圧は三角形分布するものとする。

主働土圧合力

$$Pa = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \delta - \alpha)}$$

ここに、

Pa : 主働土圧合力 (kN/m)

W : 土くさびの重量 (kN/m)

ω : すべり角 (°)

φ : 裏込め土のせん断抵抗角 (°)

δ : 壁面摩擦角 (°)

α : 土圧作用面と鉛直面のなす角 (°)

鉛直荷重·水平荷重

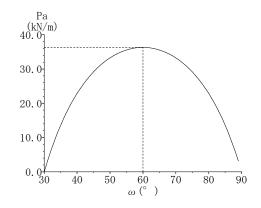
$$V = Pa \cdot sin(\delta + \alpha) \cdot L$$

$$H = Pa \cdot cos(\delta + \alpha) \cdot L$$

ここに、

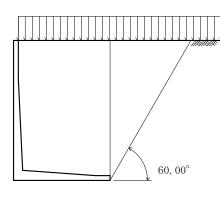
V, H: 鉛直荷重, 水平荷重 (kN)

L : 擁壁の奥行き(計算幅) L = 1.000 (m)


h = 2.900 (m)

$$\alpha$$
 = 0.00 (°)

W = 62.88 (kN/m) [載荷重: 16.74]


 $\omega = 60.00 (^{\circ})$ $\delta = 0.00 (^{\circ})$

 $\phi = 30.00 \, (^{\circ})$

最大主働土圧合力

$$Pa = \frac{62.88 \times \sin(60.00 - 30.00)}{\cos(60.00 - 30.00 - 0.00 - 0.00)}$$
$$= 36.30 \text{ (kN/m)}$$

ω	Pa	W
64.00	35. 823	53. 11
63.00	36. 036	55. 49
62.00	36. 180	57. 90
61.00	36. 268	60.36
* 60.00	36. 304	62.88
59.00	36. 274	65. 44
58.00	36. 183	68.05
57.00	36. 034	70.72
56.00	35. 819	73. 44

鉛直荷重

$$V = 36.30 \times \sin(0.00 - 0.00) \times 1.000 = 0.00 \text{ (kN)}$$

水平荷重

$$H = 36.30 \times \cos(0.00 - 0.00) \times 1.000 = 36.30 \text{ (kN)}$$

作用位置

$$x = 2.000 \text{ (m)}$$
 $y = \frac{2.900}{3} = 0.967 \text{ (m)}$

§5 安定計算

算出した荷重を集計して、以下の安定計算を行う。

5.1 計算方法

1) 滑動に対する検討

滑動に対する安全率は次式により照査を行う。

Fs =
$$\frac{$$
滑動に対する抵抗力 $}{$ 滑動力 $}=\frac{\Sigma V \cdot \tan \delta \ + C \cdot B \cdot L}{\Sigma H} \ge Fsa$

ここに、

Fs : 滑動安全率

Fsa: 滑動安全率の許容値 Fsa = 1.50

ΣV : 底版下面における全鉛直荷重 (kN)

ΣH : 水平荷重 (kN)

tan δ: 擁壁底版と基礎地盤の間の摩擦係数

 $\tan \delta = 0.577$

 C
 : 擁壁底版と基礎地盤の間の粘着力
 C = 0.0 (kN/m²)

 B
 : 擁壁の底版幅
 B = 2.000 (m)

 L
 : 擁壁の奥行き(計算幅)
 L = 1.000 (m)

2) 転倒に対する検討

転倒に対する安全率は次式により照査を行う。

$$F_{S} = \frac{\sum Mr}{\sum Mo} \ge F_{Sa}$$

ここに、

Fs : 安全率

 Σ Mr : 抵抗モーメント (kN・m) Σ Mo : 転倒モーメント (kN・m)

Fsa: 転倒安全率の許容値 Fsa = 1.50

つま先から合力の作用点までの距離 d および、合力の作用点の底版中央からの偏心距離 e は次式により求める。

$$d = \frac{\sum Mr - \sum Mo}{\sum V}$$

$$e = \frac{B}{2} - d$$

ここに、

ΣV: 底版下面における全鉛直荷重 (kN)

 Σ Mr : つま先まわりの抵抗モーメント (kN・m) Σ Mo : つま先まわりの転倒モーメント (kN・m)

B : 擁壁の底版幅 B = 2.000 (m)

転倒に対する安定条件として、偏心距離 e は次式を満足するものとする。

$$|e| \leq \frac{1}{6} B$$

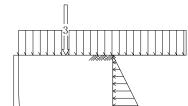
3) 支持に対する検討

地盤反力度は次式により求める。

e >
$$\frac{B}{6}$$
 のとき $q_1 = \frac{2 \cdot \Sigma V}{3 \cdot d \cdot L}$ $|e| \le \frac{B}{6}$ のとき $q_2 = \frac{\Sigma V}{B \cdot L}$ $(1 \pm \frac{6 \cdot e}{B})$ $q_2 = \frac{2 \cdot \Sigma V}{3 \cdot (B - d) \cdot L}$

ここに、

q₁,q₂ : 地盤反力度(kN/m²) ΣV : 鉛直荷重(kN)


B : 擁壁の底版幅 B = 2.000 (m)

L: 擁壁の奥行き (計算幅)L = 1.000 (m)e: 合力の作用点の底版中央からの偏心距離 (m)d: つま先から合力の作用点までの距離 (m)

5.2 計算結果

5.2.1 載荷重あり

			荷	重	作用	位置	モーノ	ベント
No	荷重	名	鉛直 V	水平 H	X	У	抵抗 Mr	転倒 Mo
			(kN)	(kN)	(m)	(m)	(kN • m)	(kN • m)
1	躯体		16. 12		0.432	0.781	6. 96	
2	裏込め土	_	97. 70		1.073	1.536	104.83	
3	載荷重		19.00		1.050	2.900	19. 95	
4	土圧			36. 30	2.000	0.967		35. 10
		合 計 Σ	132. 82	36. 30			131. 74	35. 10

≪荷重作用図≫

1) 滑動に対する安定

Fs =
$$\frac{\sum V \cdot \mu + c \cdot B \cdot L}{\sum H}$$
 = $\frac{132.82 \times 0.577 + 0.0 \times 2.000 \times 1.000}{36.30}$ = 2.11 \geq Fsa = 1.5

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$F_{\rm S} = \frac{\Sigma \, Mr}{\Sigma \, Mo} = \frac{131.74}{35.10} = 3.75 \ge F_{\rm Sa} = 1.50$$

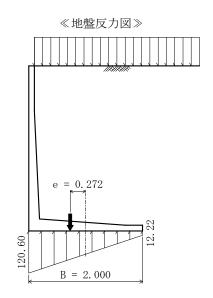
よって、転倒安全率は安定条件を満足している。

つま先から合力Rの作用点までの距離

$$d = \frac{\sum Mr - \sum Mo}{\sum V} = \frac{131.74 - 35.10}{132.82} = 0.728 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

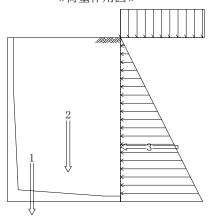
$$e = \frac{B}{2} - d = \frac{2.000}{2} - 0.728 = 0.272$$
 (m)
 $|e| = 0.272$ (m) $\leq \frac{1}{6} \cdot B = 0.333$ (m)


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

$$\begin{array}{l} q_1 \\ q_2 \end{array} = \frac{\sum V}{B \cdot L} \ (1 \pm \frac{6 \cdot e}{B}) \ = \frac{132.82}{2.000 \times 1.000} \times \ (1 \pm \frac{6 \times 0.272}{2.000}) \\ = \ \{ \begin{array}{l} 120.60 \ (k\text{N/m}^2) \\ 12.22 \ (k\text{N/m}^2) \end{array} \end{array}$$


よって、上記の値以上の支持力が必要である。

5.2.2 載荷重なし

				荷	重	作用	位置	モーノ	ベント
No	荷	重	名	鉛直 V	水平 H	X	У	抵抗 Mr	転倒 Mo
				(kN)	(kN)	(m)	(m)	(kN • m)	(kN • m)
1	躯体			16. 12		0.432	0.781	6. 96	
2	裏込め	土		97. 70		1.073	1.536	104. 83	
3	土圧				36. 30	2.000	0.967		35. 10
		合	計Σ	113.82	36. 30			111. 79	35. 10

≪荷重作用図≫

1) 滑動に対する安定

Fs =
$$\frac{\sum V \cdot \mu + c \cdot B \cdot L}{\sum H}$$
 = $\frac{113.82 \times 0.577 + 0.0 \times 2.000 \times 1.000}{36.30}$ = 1.81 \geq Fsa = 1.5

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$F_S = \frac{\sum Mr}{\sum Mo} = \frac{111.79}{35.10} = 3.18 \ge F_{Sa} = 1.50$$

よって、転倒安全率は安定条件を満足している。

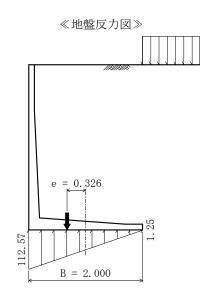
つま先から合力Rの作用点までの距離

$$d = \frac{\sum Mr - \sum Mo}{\sum V} = \frac{111.79 - 35.10}{113.82} = 0.674 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

$$e = \frac{B}{2} - d = \frac{2.000}{2} - 0.674 = 0.326 \text{ (m)}$$

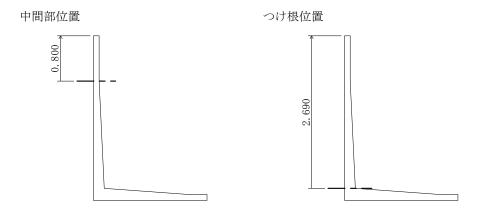
 $|e| = 0.326 \text{ (m)} \le \frac{1}{6} \cdot B = 0.333 \text{ (m)}$


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

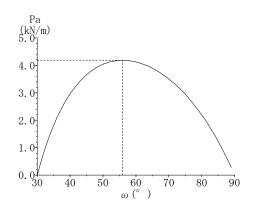
$$\begin{array}{l} q_1 \\ q_2 \end{array} = \frac{\sum V}{B \cdot L} \ (1 \pm \frac{6 \cdot e}{B}) \ = \frac{113.82}{2.000 \ \times \ 1.000} \ \times \ (1 \ \pm \frac{6 \ \times \ 0.326}{2.000} \) \\ = \ \{ \begin{array}{l} 112.57 \ (k\text{N/m}^2) \\ 1.25 \ (k\text{N/m}^2) \end{array} \end{array}$$


よって、上記の値以上の支持力が必要である。

§6 たて壁の部材断面設計

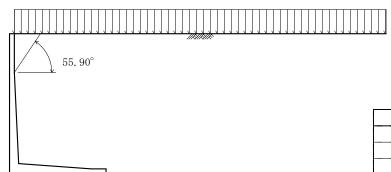
たて壁は、底版との接合部を固定端とする片持版で設計する。

6.1 断面検討位置

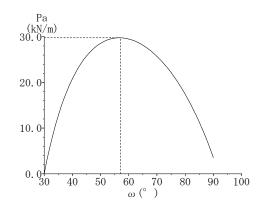

6.2 荷重の計算

たて壁に作用する荷重は、以下の荷重を考慮し、たて壁自重および土圧の鉛直分力は無視する。

6.2.1 土圧

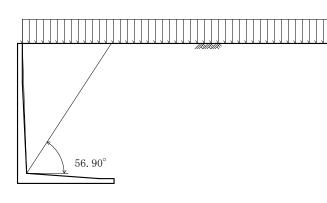

1) 中間部

最大主働土圧合力


Pa =
$$\frac{9.54 \times \sin(55.90 - 30.00)}{\cos(55.90 - 30.00 - 20.00 - 0.00)}$$

= 4.19 (kN/m)

_			
	ω	Pa	W
	60.00	4. 128	8. 13
	59.00	4. 148	8. 45
	58.00	4. 172	8.80
	57.00	4. 185	9. 15
	56.00	4. 187	9. 50
*	55. 90	4. 189	9. 54
	55.00	4. 183	9.86
	54.00	4. 167	10. 22
	53.00	4. 151	10.61
	52.00	4. 123	11.00
	51.00	4. 086	11. 40


2) つけ根

$$\alpha$$
 = 1.92 (°)
W = 65.56 (kN/m) [載荷重: 18.44]
 ω = 56.90 (°)
 δ = 20.00 (°)
 ϕ = 30.00 (°)

最大主働土圧合力

$$Pa = \frac{65.56 \times \sin(56.90 - 30.00)}{\cos(56.90 - 30.00 - 20.00 - 1.92)}$$
$$= 29.77 \text{ (kN/m)}$$

ω	Pa	W
61.00	29. 323	56. 22
60.00	29. 503	58. 42
59.00	29. 639	60.67
58.00	29. 730	62. 97
57.00	29. 772	65. 32
* 56.90	29. 774	65. 56
56.00	29. 762	67.72
55.00	29. 702	70. 18
54.00	29. 585	72.69
53.00	29. 419	75. 28
52.00	29. 193	77. 93

$$H = Pa \cdot \cos(\delta + \alpha) \cdot L$$

ここに、

L : 擁壁の奥行き (計算幅) L = 1.000 (m)

	土圧力	摩擦角	傾斜角	水平荷重	作用位置
	Pa	δ	α	Н	у
	(kN/m)	(°)	(°)	(kN)	(m)
中間部	4. 19	20.00	0.00	3. 94	0. 267
つけ根	29. 77	20.00	1.92	27. 62	0.897

0 0 0 0 0

1000

6.3 設計断面力

(1) 中間部

せん断力

$$S = H = 3.94 (kN)$$

曲げモーメント

$$M = H \cdot y = 3.94 \times 0.267$$

= 1.05 (kN · m)

(2) つけ根

せん断力

$$S = H = 27.62 (kN)$$

曲げモーメント

$$M = H \cdot y = 27.62 \times 0.897$$

= 24.78 (kN · m)

6.4 実応力度の計算

(1) 中間部

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 1862}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 60}{15 \times 1862}} \right\}$$

$$= 36.3 \text{ (mm)}$$

設計断面力

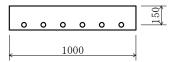
実応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 1.05 \times 10^{6}}{1000 \times 36.3 \times (60 - \frac{36.3}{3})}$$

$$= 1.21 \text{ (N/mm}^{2}) \leq \sigma \text{ ca} = 10.00 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{1.05 \times 10^{6}}{1862 \times (60 - \frac{36.3}{3})}$$

$$= 11.8 \text{ (N/mm}^{2}) \leq \sigma \text{ sa} = 160 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$


$$\tau = \frac{S}{b \cdot d} = \frac{3.94 \times 10^{3}}{1000 \times 60}$$

$$= 0.07 \text{ (N/mm}^{2}) \leq \tau \text{ a}_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

(2) つけ根

単鉄筋長方形断面で計算を行う。

有効幅 b = 1000 (mm)
有効高さ d = 150 (mm)
鉄筋量 As = D19 - 6.5
= 18.62 (cm
2
) = 1862 (mm 2)

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 1862}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 150}{15 \times 1862}} \right\}$$

$$= 67.8 \text{ (mm)}$$

設計断面力

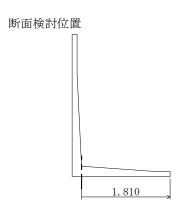
実応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 24.78 \times 10^{6}}{1000 \times 67.8 \times (150 - \frac{67.8}{3})}$$

$$= 5.74 \text{ (N/mm}^{2}) \leq \sigma \text{ ca} = 10.00 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{24.78 \times 10^{6}}{1862 \times (150 - \frac{67.8}{3})}$$

$$= 104.5 \text{ (N/mm}^{2}) \leq \sigma \text{ sa} = 160 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$


$$\tau = \frac{S}{b \cdot d} = \frac{27.62 \times 10^{3}}{1000 \times 150}$$

$$= 0.18 \text{ (N/mm}^{2}) \leq \tau \text{ a}_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

§7 かかと版(つけ根)の部材断面設計

かかと版(つけ根)は、たて壁との接合部を固定端とする片持版として設計する。

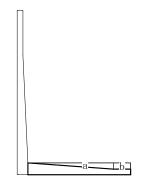
7.1 断面検討位置

7.2 荷重の計算

かかと版に作用する荷重は、以下の荷重を考慮する。

(1) かかと版自重

記		幅	高さ	面積	重心位置	断面一次
				A	Х	モーメント
号		(m)	(m)	(m^2)	(m)	A • x (m ³)
		1.810×	0.210=	0.380	0.905	0. 3439
а	$-1/2 \times$	$1.510 \times$	0.110=	-0.083	1.007	-0. 0836
b	_	0.300×	0.110=	-0.033	1.660	-0.0548
合	計			0.264		0. 2055


作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{0.2055}{0.264} = 0.778 \text{ (m)}$$

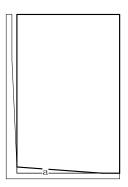
せん断力

S = A・
$$\gamma$$
 c・L = 0.264 × 24.5 × 1.000 = 6.47 (kN) 曲げモーメント

 $M = S \cdot x = 6.47 \times 0.778 = 5.03 (kN \cdot m)$

(2) かかと版上の載荷土

記		幅	高さ	面積	重心位置	断面一次
				A	X	モーメント
号		(m)	(m)	(m^2)	(m)	$A \cdot x (m^3)$
		1.810×	2.800=	5.068	0.905	4. 5865
а	$-1/2 \times$	1.510×	0.110=	-0.083	0. 503	-0.0417
合	計			4. 985		4. 5448


作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{4.5448}{4.985} = 0.912 \text{ (m)}$$

せん断力

S = A・
$$\gamma$$
s・L = 4.985 × 19.0 × 1.000 = 94.72 (kN) 曲げモーメント

$$M = S \cdot x = 94.72 \times 0.912 = 86.38 (kN \cdot m)$$

(3) 地表面載荷重

荷重強度

$$q = 10.00 (kN/m^2)$$

せん断力

$$S = q \cdot b \cdot L = 10.00 \times 1.810 \times 1.000 = 18.10 \text{ (kN)}$$

作用位置

$$x = 0.905 (m)$$

$$M = S \cdot x = 18.10 \times 0.905 = 16.38 (kN \cdot m)$$

(4) 地盤反力度

1) 載荷重あり

『 安定計算 』の結果より

$$q_1 = 120.60 \text{ (kN/m}^2\text{)}$$

$$q_2 = 12.22 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{l_2}{B} = 12.22 + (120.60 - 12.22) \times \frac{1.810}{2.000}$$

= 110.30 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot 1_2 \cdot L}{2} = \frac{(110.30 + 12.22) \times 1.810 \times 1.000}{2}$$
$$= 110.88 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{1.810}{3} \times \frac{2 \times 12.22 + 110.30}{12.22 + 110.30}$$

曲げモーメント

$$M = S \cdot x = 110.88 \times 0.664 = 73.62 (kN \cdot m)$$

2) 載荷重なし

『安定計算』の結果より

$$q_1 = 112.57 \text{ (kN/m}^2\text{)}$$

$$q_2 = 1.25 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{l_2}{B} = 1.25 + (112.57 - 1.25) \times \frac{1.810}{2.000}$$

= 101.99 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(101.99 + 1.25) \times 1.810 \times 1.000}{2}$$
$$= 93.43 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{1.810}{3} \times \frac{2 \times 1.25 + 101.99}{1.25 + 101.99}$$
$$= 0.611 \text{ (m)}$$

$$M = S \cdot x = 93.43 \times 0.611 = 57.09 (kN \cdot m)$$

7.3 設計断面力

1) 載荷重あり

		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN • m)
1	かかと版自重	6. 47	5. 03
2	かかと版上の載荷土	94. 72	86. 38
3	地盤反力	-110.88	-73.62
4	自動車荷重	18. 10	16. 38
	合 計 Σ	8. 41	34. 17

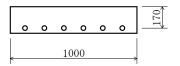
2) 載荷重なし

		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN • m)
1	かかと版自重	6. 47	5. 03
2	かかと版上の載荷土	94. 72	86. 38
3	地盤反力	-93. 43	-57. 09
	合 計 Σ	7. 76	34. 32

断面計算に用いる曲げモーメントは、たて壁つけ根の曲げモーメント $Mo = 24.78 (kN \cdot m)$ とする。 実応力度計算には、以下の最大断面力を用いる。

せん断力

S = 8.41 (kN)


曲げモーメント

 $M = 24.78 \text{ (kN} \cdot \text{m)}$

7.4 実応力度の計算

単鉄筋長方形断面で計算を行う。

有効幅 b = 1000 (mm)
有効高さ d = 170 (mm)
鉄筋量 As = D19 - 6.5
= 18.62 (cm
2
) = 1862 (mm 2)

0. K.

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 1862}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 170}{15 \times 1862}} \right\}$$

$$= 73.4 \text{ (mm)}$$

設計断面力

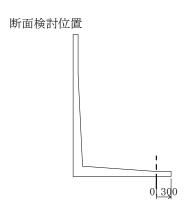
実応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 24.78 \times 10^{6}}{1000 \times 73.4 \times (170 - \frac{73.4}{3})}$$

$$= 4.64 \text{ (N/mm}^{2}) \leq \sigma \text{ ca} = 10.00 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{24.78 \times 10^{6}}{1862 \times (170 - \frac{73.4}{3})}$$

$$= 91.4 \text{ (N/mm}^{2}) \leq \sigma \text{ sa} = 160 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$


$$\tau = \frac{S}{b \cdot d} = \frac{8.41 \times 10^{3}}{1000 \times 170}$$

$$= 0.05 \text{ (N/mm}^{2}) \leq \tau \text{ a}_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

§8 かかと版(中間部)の部材断面設計

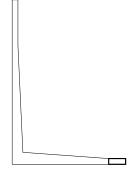
かかと版(中間部)は、下の指定位置を固定端とする片持版として設計する。

8.1 断面検討位置

8.2 荷重の計算

かかと版に作用する荷重は、以下の荷重を考慮する。

(1) かかと版自重


面積

$$A = b \cdot h = 0.300 \times 0.100 = 0.030 \text{ (m}^2)$$

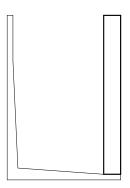
せん断力

S =
$$A \cdot \gamma c \cdot L$$
 = 0.030 × 24.5 × 1.000 = 0.74 (kN)

$$M = S \cdot x = 0.74 \times 0.150 = 0.11 (kN \cdot m)$$

(2) かかと版上の載荷土

面積


$$A = b \cdot h = 0.300 \times 2.800 = 0.840$$
 (m²)

せん断力

S = A •
$$\gamma$$
 s • L = 0.840 × 19.0 × 1.000 = 15.96 (kN)

曲げモーメント

$$M = S \cdot x = 15.96 \times 0.150 = 2.39 (kN \cdot m)$$

(3) 地表面載荷重

荷重強度

$$q = 10.00 (kN/m^2)$$

せん断力

$$S = q \cdot b \cdot L = 10.00 \times 0.300 \times 1.000 = 3.00 \text{ (kN)}$$

作用位置

$$x = 0.150$$
 (m)

曲げモーメント

$$M = S \cdot x = 3.00 \times 0.150 = 0.45 \text{ (kN} \cdot \text{m)}$$

(4) 地盤反力度

1) 載荷重あり

『 安定計算 』の結果より

$$q_1 = 120.60 \text{ (kN/m}^2\text{)}$$

$$q_2 = 12.22 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{l_2}{B} = 12.22 + (120.60 - 12.22) \times \frac{0.300}{2.000}$$

= 28.48 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(28.48 + 12.22) \times 0.300 \times 1.000}{2}$$

$$= 6.11 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.300}{3} \times \frac{2 \times 12.22 + 28.48}{12.22 + 28.48}$$
$$= 0.130 \text{ (m)}$$

$$M = S \cdot x = 6.11 \times 0.130 = 0.79 \text{ (kN} \cdot \text{m)}$$

2) 載荷重なし

『 安定計算 』の結果より

$$q_1 = 112.57 \text{ (kN/m}^2\text{)}$$

$$q_2 = 1.25 (kN/m^2)$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{1_2}{B} = 1.25 + (112.57 - 1.25) \times \frac{0.300}{2.000}$$

= 17.95 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot 1_2 \cdot L}{2} = \frac{(17.95 + 1.25) \times 0.300 \times 1.000}{2}$$
$$= 2.88 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.300}{3} \times \frac{2 \times 1.25 + 17.95}{1.25 + 17.95}$$
$$= 0.107 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 2.88 \times 0.107 = 0.31 (kN \cdot m)$$

8.3 設計断面力

かかと版中間部の曲げモーメントは

たて壁つけ根の曲げモーメントを超えないものとする。

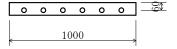
1) 載荷重あり

		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN • m)
1	かかと版自重	0.74	0. 11
2	かかと版上の載荷土	15. 96	2. 39
3	地盤反力	-6. 11	-0. 79
4	自動車荷重	3.00	0.45
	合 計 Σ	13. 59	2. 16

2) 載荷重なし

		せん断力	曲げモーメント
No	荷 重 名	S	M
<u> </u>		(kN)	(kN • m)
1	かかと版自重	0.74	0. 11
2	かかと版上の載荷土	15. 96	2. 39
3	地盤反力	-2. 88	-0. 31
	合 計 Σ	13.82	2. 19

実応力度計算には、以下の最大断面力を用いる。


せん断力

$$S = 13.82 (kN)$$

$$M = 2.19 (kN \cdot m)$$

8.4 実応力度の計算

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 1862}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 60}{15 \times 1862}} \right\}$$

$$= 36.3 \text{ (mm)}$$

設計断面力

実応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 2.19 \times 10^{6}}{1000 \times 36.3 \times (60 - \frac{36.3}{3})}$$

$$= 2.52 \text{ (N/mm}^{2}) \leq \sigma \text{ ca} = 10.00 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{2.19 \times 10^{6}}{1862 \times (60 - \frac{36.3}{3})}$$

$$= 24.6 \text{ (N/mm}^{2}) \leq \sigma \text{ sa} = 160 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\tau = \frac{S}{b \cdot d} = \frac{13.82 \times 10^{3}}{1000 \times 60}$$

$$= 0.23 \text{ (N/mm}^{2}) \leq \tau \text{ a}_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$