CLP (H) $2600 \times$ (B) $1850 \times$ (L) 2000

2011 年 4月

千葉窯業株式会社

目 次

§ 1	設計条件	1
§ 2	一般形状寸法図	2
§ 3	計算結果	3
§ 4	設計荷重	6
§ 5	安定計算	10
§ 6	たて壁の部材断面設計	15
§ 7	かかと版(つけ根)の部材断面設計	20
§ 8	かかと版(中間部)の部材断面設計	25

- §1 設計条件
- 1.1 設計条件

(1) 擁壁形式 プレキャストL型擁壁

(2) 基礎形式 直接基礎

(3) 擁壁高さ H = 2.600 (m)

(4) 土 圧 試行くさび法による土圧

(5) 地表面載荷重 $q = 10.0 (kN/m^2)$

(6) 単位体積重量 製品 $\gamma c = 24.5$ (kN/m³)

- 1.2 土質条件
- (1) 擁壁背面の裏込め土

せん断抵抗角 ϕ = 30.00 (°) 単位体積重量 γ s = 19.0 (kN/m³)

(2) 支持地盤の定数

擁壁底版と基礎地盤の間の摩擦係数 μ = 0.577

 η の粘着力 $C=0.0~(kN/m^2)$

許容地盤反力度 $qa = 107.68 (kN/m^2)$ 以上必要

1.3 安定条件

(1) 滑動に対する検討 滑動安全率 Fs \geq 1.50

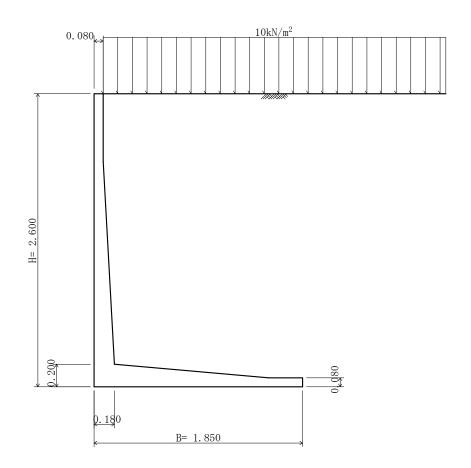
(2) 転倒に対する検討 偏心距離 | e | ≦ 1/6 B

転倒安全率 Fs ≧ 1.50

- 1.4 材料強度及び許容応力度
- (1) コンクリート

設計基準強度 $\sigma \, ck = 30 \, (N/mm^2)$ 許容圧縮応力度 $\sigma \, ca = 10.00 \, (N/mm^2)$ 許容せん断応力度 $\tau \, a = 0.45 \, (N/mm^2)$

(2) 鉄筋


許容引張応力度 σ sa = 160 (N/mm^2)

- 1.5 参考文献
 - 一、道路土工 一 擁壁工指針 (社)日本道路協会

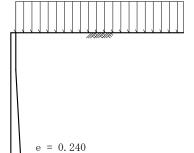
§ 2 一般形状寸法図

2.1 一般図

製品名: CLP (H) 2600×(B) 1850

§3 計算結果

3.1 安定計算結果


安定計算は、滑動・転倒・支持の安定に対して検討を行った。

107.68

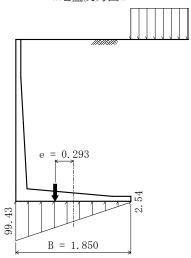
3.1.1 載荷重あり

(1) 安定計算

鉛直荷重	水平荷重	偏心距離	転 倒	滑動	地盤反	力度	
Σ V	ΣΗ	е	安全率	安全率	\mathbf{q}_1	\mathbf{q}_2	判定
(kN)	(kN)	(m)	Fs	Fs	(kN/m	n ²)	
112.02	30.08	0. 240	3.94	2. 15	107.68	13.42	O. K.
許	容 値	0.308	1.50	1.50			

B = 1.850

13.42


≪地盤反力図≫

3.1.2 載荷重なし

(1) 安定計算

鉛直荷重	水平荷重	偏心距離	転 倒	滑動	地盤反	力度	
Σ V	Σ H	е	安全率	安全率	\mathbf{q}_1	\mathbf{q}_2	判定
(kN)	(kN)	(m)	Fs	Fs	(kN/m²	2)	
94. 32	30.08	0. 293	3. 29	1.81	99. 43	2.54	O. K.
許	容 値	0.308	1.50	1.50			

3.2 断面計算結果

3.2.1 たて壁の断面計算

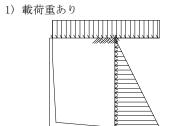
部材	Ĺ	頁 目	1	中間部	つけ根
ナーアロウ	4 7	b	(mm)	1000	1000
たて壁	部 材	d	(mm)	50	150
	断	As	(mm ²)	D16 - 6.5 1291	D16 - 6.5
	面	X	(mm)	28. 7	1291 59. 3
	断	曲げモー	_ ` ′	0.53×10^{6}	18. 33 × 10 ⁶
	面 力	せん断力 S	(N)	2.63×10^{3}	22.91×10^{3}
		リートの	σс	0.91	4. 75
		曲げ圧縮応力度 (N/mm²)		10.00	10.00
	鉄筋の			10.2	109. 0
		曲げ引張応力度 (N/mm²)		160	160
		コンクリートのせん断応力度		0.05	0. 15
		N/mm²)	τca	0.45	0. 45

3.2.2 底版の断面計算

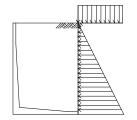
部材	Ĭ	頁 [■	かかと つけ根	かかと 中間
	廿 7	b	(mm)	1000	1000
底版	部材	d	(mm)	170	50
	断	As	(mm^2)	D16 - 6.5 1291	D16 - 6.5 1291
	面	X	(mm)	64. 1	28.7
	断	曲げモー M	ーメント (N・mm)	18.33 × 10 ⁶	1.89 × 10 ⁶
	面 力	せん断フ S	ל (N)	6.92 × 10 ³	11.83×10^{3}
		リートの	σс	3.85	3. 26
		(N/mm²)		10.00	10.00
	鉄筋の	長応力度	σs	95. 5	36. 2
		N/mm²)	σsa	160	160
	コンクリせん断層	リートの	τ	0.04	0.24
		い力度 N/mm²)	τса	0.45	0.45

§ 4 設計荷重

擁壁に作用する荷重は、以下の荷重を考える。

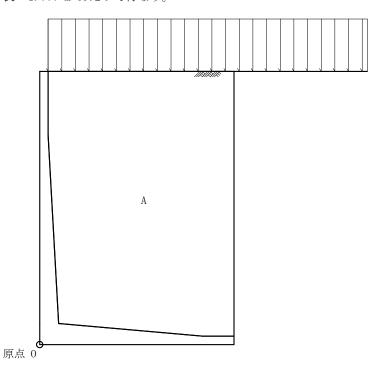

- 自 重
- ・載 荷 重
- · 土 圧

4.1 荷重の組合せ


以下の組合せについて設計を行う。

常 時 自重(+載荷重)+土圧

4.1.1 荷重の組合せ一覧



4.2 荷重の計算

擁壁に作用する荷重の、鉛直荷重V、水平荷重H、および、原点0に対する作用位置 (x, y)の計算を奥行き長 1.000~m あたりで行なう。

4.2.1 自重

(1) 躯体

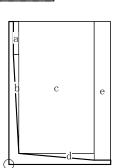
1) 製品

記		幅	高さ	面積	重心	位 置	断面一次日	モーメント
				A	X	У	A • x	А•у
号		(m)	(m)	(m^2)	(m)	(m)	(m^3)	(m ³)
		$1.850 \times$	2.600=	4.810	0.925	1.300	4. 4493	6. 2530
a	_	0.100 \times	0.600=	-0.060	0.130	2.300	-0.0078	-0. 1380
b	$-1/2 \times$	0.100 \times	1.800=	-0.090	0.147	1.400	-0.0132	-0. 1260
С	-	$1.370 \times$	2.400=	-3.288	0.865	1.400	-2. 8441	-4. 6032
d	$-1/2 \times$	1.370×	0.120=	-0.082	1.093	0.160	-0. 0896	-0. 0131
е	_	0.300×	2. 520=	-0.756	1.700	1.340	-1. 2852	-1. 0130
合	計			0.534			0. 2094	0. 3597

体積

$$V_0 = \Sigma A \cdot L = 0.534 \times 1.000 = 0.534 \text{ (m}^3\text{)}$$

荷重


$$V = V_0 \cdot \gamma c = 0.534 \times 24.5 = 13.08 \text{ (kN)}$$

作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{0.2094}{0.534} = 0.392 \text{ (m)}$$

$$y = \frac{\sum A \cdot y}{\sum A} = \frac{0.3597}{0.534} = 0.674 \text{ (m)}$$

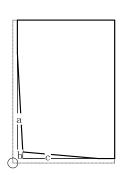
$$y = \frac{\sum A \cdot y}{\sum A} = \frac{0.3597}{0.534} = 0.674 \text{ (m)}$$

(2) 載荷土

1) 裏込め土

記		幅	高さ	面積	重 心	位 置	断面一次平	モーメント
İ				A	X	у	A • x	А•у
号		(m)	(m)	(m^2)	(m)	(m)	(m ³)	(m ³)
		1.770×	2. 520=	4. 460	0.965	1.340	4. 3039	5. 9764
а	-1/2×	0.100×	1.800=	-0.090	0.113	0.800	-0.0102	-0.0720
b	_	0.100×	0.120=	-0.012	0.130	0.140	-0.0016	-0.0017
С	$-1/2 \times$	1.370×	0.120=	-0.082	0.637	0.120	-0.0522	-0.0098
合	計			4. 276			4. 2399	5. 8929

$$V_0 = \Sigma A \cdot L = 4.276 \times 1.000 = 4.276 \text{ (m}^3\text{)}$$


荷重

$$V = V_0 \cdot \gamma_S = 4.276 \times 19.0 = 81.24 \text{ (kN)}$$

作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{4.2399}{4.276} = 0.992$$
 (m)

$$y = \frac{\sum A \cdot y}{\sum A} = \frac{5.8929}{4.276} = 1.378 \text{ (m)}$$

4.2.2 載荷重

地表面載荷重のうち擁壁上に載るものを鉛直荷重として考慮する。

荷重

$$V = q \cdot b \cdot L = 10.0 \times 1.770 \times 1.000 = 17.70 \text{ (kN)}$$

作用位置

$$x = B - \frac{b}{2} = 1.850 - \frac{1.770}{2} = 0.965 (m)$$

4.2.3 土圧

土圧の計算は、試行くさび法により行う。また、土圧は三角形分布するものとする。

主働土圧合力

$$Pa = \frac{W \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \delta - \alpha)}$$

ここに、

Pa : 主働土圧合力 (kN/m)

W : 土くさびの重量 (kN/m)

ω : すべり角 (°)

φ : 裏込め土のせん断抵抗角 (°)

δ : 壁面摩擦角 (°)

α : 土圧作用面と鉛直面のなす角 (°)

鉛直荷重·水平荷重

$$V = Pa \cdot sin(\delta + \alpha) \cdot L$$

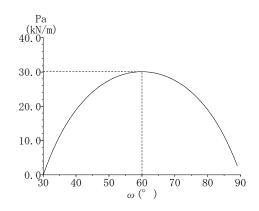
$$H = Pa \cdot cos(\delta + \alpha) \cdot L$$

ここに、

V, H: 鉛直荷重, 水平荷重 (kN)

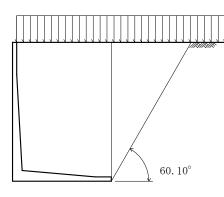
L: 擁壁の奥行き(計算幅) L=1.000 (m)

$$h = 2.600 (m)$$


$$\alpha = 0.00 (^{\circ})$$

W = 51.89 (kN/m) [載荷重: 14.95]

 $\omega = 60.10 (^{\circ})$


 $\delta = 0.00 (^{\circ})$

 $\phi = 30.00 \, (^{\circ})$

最大主働土圧合力

$$Pa = \frac{51.89 \times \sin(60.10 - 30.00)}{\cos(60.10 - 30.00 - 0.00 - 0.00)}$$
$$= 30.08 \text{ (kN/m)}$$

	ω	Pa	W
	65.00	29. 458	42.07
	64.00	29. 685	44.01
	63.00	29.853	45. 97
	62.00	29. 975	47. 97
	61.00	30. 055	50.02
*	60.10	30. 080	51.89
	60.00	30.068	52.08
	59.00	30. 049	54. 21
	58.00	29. 972	56. 37
	57.00	29. 853	58. 59
	56.00	29. 683	60.86

鉛直荷重

$$V = 30.08 \times \sin(0.00 - 0.00) \times 1.000 = 0.00 \text{ (kN)}$$

水平荷重

$$H = 30.08 \times \cos(0.00 - 0.00) \times 1.000 = 30.08 \text{ (kN)}$$

作用位置

$$x = 1.850 \text{ (m)}$$

 $y = \frac{2.600}{3} = 0.867 \text{ (m)}$

§5 安定計算

算出した荷重を集計して、以下の安定計算を行う。

5.1 計算方法

1) 滑動に対する検討

滑動に対する安全率は次式により照査を行う。

Fs =
$$\frac{$$
滑動に対する抵抗力 $}{$ 滑動力 $}=\frac{\Sigma V \cdot \tan \delta \ + C \cdot B \cdot L}{\Sigma H} \ge Fsa$

ここに、

Fs : 滑動安全率

Fsa: 滑動安全率の許容値 Fsa = 1.50

ΣV : 底版下面における全鉛直荷重 (kN)

ΣH : 水平荷重 (kN)

tan δ: 擁壁底版と基礎地盤の間の摩擦係数

 $\tan \delta = 0.577$

 C
 : 擁壁底版と基礎地盤の間の粘着力
 C = 0.0 (kN/m²)

 B
 : 擁壁の底版幅
 B = 1.850 (m)

 L
 : 擁壁の奥行き(計算幅)
 L = 1.000 (m)

2) 転倒に対する検討

転倒に対する安全率は次式により照査を行う。

$$F_{S} = \frac{\sum Mr}{\sum Mo} \ge F_{Sa}$$

ここに、

Fs : 安全率

 Σ Mr : 抵抗モーメント (kN・m) Σ Mo : 転倒モーメント (kN・m)

Fsa: 転倒安全率の許容値 Fsa = 1.50

つま先から合力の作用点までの距離 d および、合力の作用点の底版中央からの偏心距離 e は次式により求める。

$$d = \frac{\sum Mr - \sum Mo}{\sum V}$$

$$e = \frac{B}{2} - d$$

ここに、

 ΣV : 底版下面における全鉛直荷重 (kN) ΣMr : つま先まわりの抵抗モーメント (kN・m) ΣMo : つま先まわりの転倒モーメント (kN・m)

B : 擁壁の底版幅 B = 1.850 (m)

転倒に対する安定条件として、偏心距離 e は次式を満足するものとする。

$$|e| \leq \frac{1}{6} B$$

3) 支持に対する検討

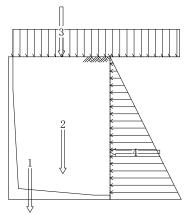
地盤反力度は次式により求める。

e >
$$\frac{B}{6}$$
 のとき $q_1 = \frac{2 \cdot \Sigma V}{3 \cdot d \cdot L}$ $|e| \le \frac{B}{6}$ のとき $q_2 = \frac{\Sigma V}{B \cdot L}$ $(1 \pm \frac{6 \cdot e}{B})$ $q_2 = \frac{2 \cdot \Sigma V}{3 \cdot (B - d) \cdot L}$

ここに、

q₁,q₂ : 地盤反力度 (kN/m²) ΣV : 鉛直荷重 (kN)

B : 擁壁の底版幅 B = 1.850 (m)


L: 擁壁の奥行き (計算幅)L = 1.000 (m)e: 合力の作用点の底版中央からの偏心距離 (m)d: つま先から合力の作用点までの距離 (m)

5.2 計算結果

5.2.1 載荷重あり

				荷	重	作用	位置	モーノ	ベント
No	荷	重	名	鉛直 V	水平 H	X	У	抵抗 Mr	転倒 Mo
				(kN)	(kN)	(m)	(m)	(kN • m)	(kN • m)
1	躯体			13. 08		0.392	0.674	5. 13	
2	裏込め	土		81. 24		0.992	1.378	80. 59	
3	載荷重			17. 70		0.965	2.600	17. 08	
4	土圧				30.08	1.850	0.867		26. 08
		合	計Σ	112. 02	30.08			102. 80	26. 08

1) 滑動に対する安定

Fs =
$$\frac{\sum V \cdot \mu + c \cdot B \cdot L}{\sum H}$$
 = $\frac{112.02 \times 0.577 + 0.0 \times 1.850 \times 1.000}{30.08}$ = 2.15 \geq Fsa = 1.5

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$F_S = \frac{\sum Mr}{\sum Mo} = \frac{102.80}{26.08} = 3.94 \ge F_{Sa} = 1.50$$

よって、転倒安全率は安定条件を満足している。

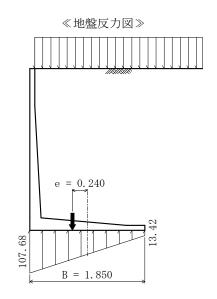
つま先から合力Rの作用点までの距離

$$d = \frac{\sum Mr - \sum Mo}{\sum V} = \frac{102.80 - 26.08}{112.02} = 0.685 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

$$e = \frac{B}{2} - d = \frac{1.850}{2} - 0.685 = 0.240 \text{ (m)}$$

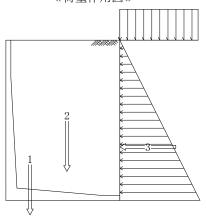
 $|e| = 0.240 \text{ (m)} \le \frac{1}{6} \cdot B = 0.308 \text{ (m)}$


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

$$\begin{array}{lll} q_1 & = & \frac{\sum V}{B \cdot L} & (1 \pm \frac{6 \cdot e}{B}) & = & \frac{112.02}{1.850 \times 1.000} \times (1 \pm \frac{6 \times 0.240}{1.850}) \\ & = & \{ & \frac{107.68 \ (k\text{N/m}^2)}{13.42 \ (k\text{N/m}^2)}) \end{array}$$


よって、上記の値以上の支持力が必要である。

5.2.2 載荷重なし

				荷	重	作用	位置	モーノ	ベント
No	荷	重	名	鉛直 V	水平 H	X	у	抵抗 Mr	転倒 Mo
				(kN)	(kN)	(m)	(m)	(kN • m)	(kN • m)
1	躯体			13.08		0.392	0.674	5. 13	
2	裏込め	<u>±</u> .		81. 24		0.992	1.378	80. 59	
3	土圧				30.08	1.850	0.867		26. 08
		合	計Σ	94. 32	30.08			85. 72	26. 08

≪荷重作用図≫

1) 滑動に対する安定

Fs =
$$\frac{\sum V \cdot \mu + c \cdot B \cdot L}{\sum H}$$
 = $\frac{94.32 \times 0.577 + 0.0 \times 1.850 \times 1.000}{30.08}$
= 1.81 \geq Fsa = 1.5

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$F_S = \frac{\sum Mr}{\sum Mo} = \frac{85.72}{26.08} = 3.29 \ge F_{Sa} = 1.50$$

よって、転倒安全率は安定条件を満足している。

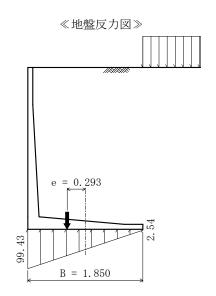
つま先から合力Rの作用点までの距離

$$d = \frac{\sum Mr - \sum Mo}{\sum V} = \frac{85.72 - 26.08}{94.32} = 0.632 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

$$e = \frac{B}{2} - d = \frac{1.850}{2} - 0.632 = 0.293 \text{ (m)}$$

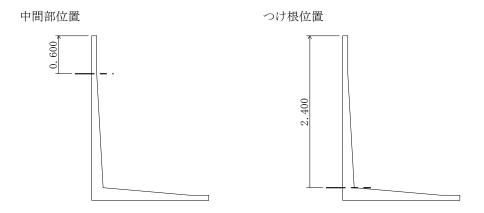
 $|e| = 0.293 \text{ (m)} \le \frac{1}{6} \cdot B = 0.308 \text{ (m)}$


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

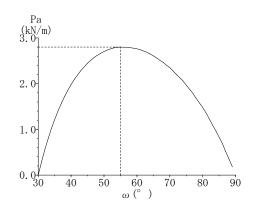
$$\begin{array}{l} q_1 \\ q_2 \end{array} = \frac{\sum V}{B \cdot L} \ (1 \pm \frac{6 \cdot e}{B}) \ = \frac{94.32}{1.850 \ \times \ 1.000} \ \times \ (1 \ \pm \frac{6 \ \times \ 0.293}{1.850} \) \\ = \ \{ \begin{array}{l} 99.43 \ (k\text{N/m}^2) \\ 2.54 \ (k\text{N/m}^2) \end{array} \end{array}$$


よって、上記の値以上の支持力が必要である。

§6 たて壁の部材断面設計

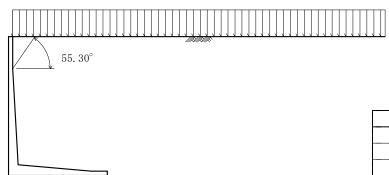
たて壁は、底版との接合部を固定端とする片持版で設計する。

6.1 断面検討位置


6.2 荷重の計算

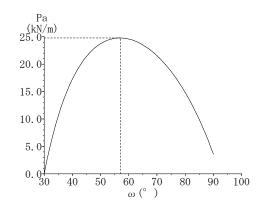
たて壁に作用する荷重は、以下の荷重を考慮し、たて壁自重および土圧の鉛直分力は無視する。

6.2.1 土圧


1) 中間部

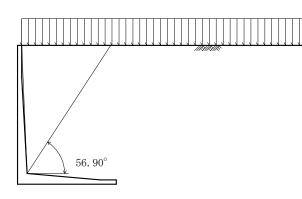
 α = 0.00 (°) W = 6.53 (kN/m) [載荷重: 4.15] ω = 55.30 (°) δ = 20.00 (°) ϕ = 30.00 (°)

最大主働土圧合力


Pa =
$$\frac{6.53 \times \sin(55.30 - 30.00)}{\cos(55.30 - 30.00 - 20.00 - 0.00)}$$

= 2.80 (kN/m)

ω		Pa	W
60.	00	2. 762	5. 44
59.	00	2. 778	5. 66
58.	00	2. 788	5. 88
57.	00	2. 799	6. 12
56.	00	2. 799	6. 35
* 55.	30	2. 803	6. 53
55.	00	2.800	6.60
54.	00	2. 793	6.85
53.	00	2. 782	7. 11
52.	00	2. 763	7. 37
51.	00	2, 735	7. 63


2) つけ根

 α = 2.39 (°) W = 54.61 (kN/m) [載荷重: 16.65] ω = 56.90 (°) δ = 20.00 (°) ϕ = 30.00 (°)

最大主働土圧合力

$$Pa = \frac{54.61 \times \sin(56.90 - 30.00)}{\cos(56.90 - 30.00 - 20.00 - 2.39)}$$
$$= 24.78 \text{ (kN/m)}$$

ω	Pa	W
61.00	24. 446	46. 93
60.00	24. 582	48. 73
59.00	24. 691	50. 59
58.00	24. 756	52.48
57.00	24. 777	54.40
* 56.90	24. 784	54.61
56.00	24. 769	56. 39
55.00	24. 711	58. 41
54.00	24. 609	60.48
53.00	24. 461	62.60
52.00	24. 268	64. 78

$$H = Pa \cdot \cos(\delta + \alpha) \cdot L$$

ここに、

L : 擁壁の奥行き (計算幅) L = 1.000 (m)

	土圧力	摩擦角	傾斜角	水平荷重	作用位置
	Pa	δ	α	Н	у
	(kN/m)	(°)	(°)	(kN)	(m)
中間部	2.80	20.00	0.00	2. 63	0. 200
つけ根	24. 78	20.00	2.39	22. 91	0.800

1000

0. K.

6.3 設計断面力

(1) 中間部

せん断力

$$S = H = 2.63 (kN)$$

曲げモーメント

$$M = H \cdot y = 2.63 \times 0.200$$

= 0.53 (kN \cdot m)

(2) つけ根

せん断力

$$S = H = 22.91 (kN)$$

曲げモーメント

$$M = H \cdot y = 22.91 \times 0.800$$

= 18.33 (kN · m)

6.4 実応力度の計算

(1) 中間部

単鉄筋長方形断面で計算を行う。

有効幅 b = 1000 (mm)
有効高さ d = 50 (mm)
鉄筋量 As = D16 - 6.5
= 12.91 (cm
2
) = 1291 (mm 2)

コンクリートに対する鉄筋のヤング係数比 n = 15

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 1291}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 50}{15 \times 1291}} \right\}$$

$$= 28.7 \text{ (mm)}$$

設計断面力

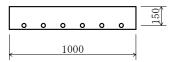
実応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 0.53 \times 10^{6}}{1000 \times 28.7 \times (50 - \frac{28.7}{3})}$$

$$= 0.91 \text{ (N/mm}^{2}) \leq \sigma \text{ ca} = 10.00 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{0.53 \times 10^{6}}{1291 \times (50 - \frac{28.7}{3})}$$

$$= 10.2 \text{ (N/mm}^{2}) \leq \sigma \text{ sa} = 160 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$


$$\tau = \frac{S}{b \cdot d} = \frac{2.63 \times 10^{3}}{1000 \times 50}$$

$$= 0.05 \text{ (N/mm}^{2}) \leq \tau \text{ a}_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

(2) つけ根

単鉄筋長方形断面で計算を行う。

有効幅 b = 1000 (mm)
有効高さ d = 150 (mm)
鉄筋量 As = D16 - 6.5
= 12.91 (cm
2
) = 1291 (mm 2)

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 1291}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 150}{15 \times 1291}} \right\}$$

$$= 59.3 \text{ (mm)}$$

設計断面力

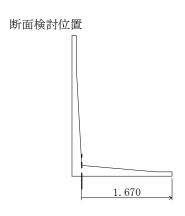
実応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 18.33 \times 10^{6}}{1000 \times 59.3 \times (150 - \frac{59.3}{3})}$$

$$= 4.75 \text{ (N/mm}^{2}) \leq \sigma \text{ ca} = 10.00 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{18.33 \times 10^{6}}{1291 \times (150 - \frac{59.3}{3})}$$

$$= 109.0 \text{ (N/mm}^{2}) \leq \sigma \text{ sa} = 160 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$


$$\tau = \frac{S}{b \cdot d} = \frac{22.91 \times 10^{3}}{1000 \times 150}$$

$$= 0.15 \text{ (N/mm}^{2}) \leq \tau \text{ a}_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

§7 かかと版(つけ根)の部材断面設計

かかと版(つけ根)は、たて壁との接合部を固定端とする片持版として設計する。

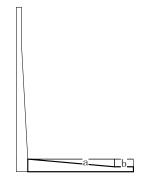
7.1 断面検討位置

7.2 荷重の計算

かかと版に作用する荷重は、以下の荷重を考慮する。

(1) かかと版自重

記		幅	高さ	面積	重心位置	断面一次
1				A	Х	モーメント
号		(m)	(m)	(m^2)	(m)	A • x (m ³)
		1.670×	0.200=	0.334	0.835	0. 2789
a	$-1/2 \times$	$1.370 \times$	0.120=	-0.082	0.913	-0.0749
b	_	0.300×	0. 120=	-0.036	1.520	-0. 0547
合	計			0.216		0. 1493


作用位置

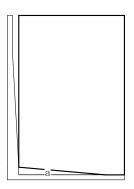
$$x = \frac{\sum A \cdot x}{\sum A} = \frac{0.1493}{0.216} = 0.691 \text{ (m)}$$

せん断力

S = A・
$$\gamma$$
 c・L = 0.216 × 24.5 × 1.000 = 5.29 (kN) 曲げモーメント

(2) かかと版上の載荷土

記		幅	高さ	面積	重心位置	断面一次
				A	X	モーメント
号		(m)	(m)	(m^2)	(m)	$A \cdot x (m^3)$
		$1.670 \times$	2.520=	4. 208	0.835	3. 5137
а	$-1/2 \times$	$1.370 \times$	0.120=	-0.082	0.457	-0. 0375
合	計			4. 126		3. 4762


作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{3.4762}{4.126} = 0.843 \text{ (m)}$$

せん断力

S = A・
$$\gamma$$
s・L = 4.126 × 19.0 × 1.000 = 78.39 (kN) 曲げモーメント

$$M = S \cdot x = 78.39 \times 0.843 = 66.08 (kN \cdot m)$$

(3) 地表面載荷重

荷重強度

$$q = 10.00 (kN/m^2)$$

せん断力

$$S = q \cdot b \cdot L = 10.00 \times 1.670 \times 1.000 = 16.70 \text{ (kN)}$$

作用位置

$$x = 0.835$$
 (m)

曲げモーメント

$$M = S \cdot x = 16.70 \times 0.835 = 13.94 (kN \cdot m)$$

(4) 地盤反力度

1) 載荷重あり

『 安定計算 』の結果より

$$q_1 = 107.68 \text{ (kN/m}^2\text{)}$$

$$q_2 = 13.42 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{l_2}{B} = 13.42 + (107.68 - 13.42) \times \frac{1.670}{1.850}$$

= 98.51 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot 1_2 \cdot L}{2} = \frac{(98.51 + 13.42) \times 1.670 \times 1.000}{2}$$
$$= 93.46 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{1.670}{3} \times \frac{2 \times 13.42 + 98.51}{13.42 + 98.51}$$
$$= 0.623 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 93.46 \times 0.623 = 58.23 \text{ (kN} \cdot \text{m)}$$

2) 載荷重なし

『 安定計算 』の結果より

$$q_1 = 99.43 \text{ (kN/m}^2\text{)}$$

$$q_2 = 2.54 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{l_2}{B} = 2.54 + (99.43 - 2.54) \times \frac{1.670}{1.850}$$

= 90.00 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(90.00 + 2.54) \times 1.670 \times 1.000}{2}$$
$$= 77.27 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{1.670}{3} \times \frac{2 \times 2.54 + 90.00}{2.54 + 90.00}$$
$$= 0.572 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 77.27 \times 0.572 = 44.20 (kN \cdot m)$$

7.3 設計断面力

1) 載荷重あり

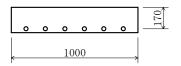
		せん断力	曲げモーメント
No	荷 重 名	S	M
l		(kN)	(kN • m)
1	かかと版自重	5. 29	3. 66
2	かかと版上の載荷土	78. 39	66. 08
3	地盤反力	-93. 46	-58. 23
4	自動車荷重	16. 70	13. 94
	合 計 Σ	6. 92	25. 45

2) 載荷重なし

		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN • m)
1	かかと版自重	5. 29	3. 66
2	かかと版上の載荷土	78. 39	66. 08
3	地盤反力	-77. 27	-44. 20
	合 計 Σ	6. 41	25. 54

断面計算に用いる曲げモーメントは、たて壁つけ根の曲げモーメント Mo = 18.33 (kN・m) とする。 実応力度計算には、以下の最大断面力を用いる。

せん断力


S = 6.92 (kN)

曲げモーメント

 $M = 18.33 (kN \cdot m)$

7.4 実応力度の計算

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 1291}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 170}{15 \times 1291}} \right\}$$

$$= 64.1 \text{ (mm)}$$

設計断面力

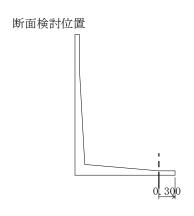
実応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 18.33 \times 10^{6}}{1000 \times 64.1 \times (170 - \frac{64.1}{3})}$$

$$= 3.85 \text{ (N/mm}^{2}) \leq \sigma \text{ ca} = 10.00 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{18.33 \times 10^{6}}{1291 \times (170 - \frac{64.1}{3})}$$

$$= 95.5 \text{ (N/mm}^{2}) \leq \sigma \text{ sa} = 160 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$


$$\tau = \frac{S}{b \cdot d} = \frac{6.92 \times 10^{3}}{1000 \times 170}$$

$$= 0.04 \text{ (N/mm}^{2}) \leq \tau \text{ a}_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

§8 かかと版(中間部)の部材断面設計

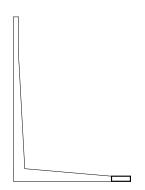
かかと版(中間部)は、下の指定位置を固定端とする片持版として設計する。

8.1 断面検討位置

8.2 荷重の計算

かかと版に作用する荷重は、以下の荷重を考慮する。

(1) かかと版自重


面積

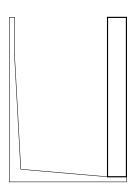
$$A = b \cdot h = 0.300 \times 0.080 = 0.024 \text{ (m}^2\text{)}$$

せん断力

S = A・
$$\gamma$$
 c・L = 0.024 × 24.5 × 1.000 = 0.59 (kN) 曲げモーメント

 $M = S \cdot x = 0.59 \times 0.150 = 0.09 \text{ (kN} \cdot \text{m)}$

(2) かかと版上の載荷土


面積

$$A = b \cdot h = 0.300 \times 2.520 = 0.756$$
 (m²)

せん断力

S = A・
$$\gamma$$
s・L = 0.756 × 19.0 × 1.000 = 14.36 (kN) 曲げモーメント

$$M = S \cdot x = 14.36 \times 0.150 = 2.15 (kN \cdot m)$$

(3) 地表面載荷重

荷重強度

$$q = 10.00 (kN/m^2)$$

せん断力

$$S = q \cdot b \cdot L = 10.00 \times 0.300 \times 1.000 = 3.00 \text{ (kN)}$$

作用位置

$$x = 0.150 (m)$$

曲げモーメント

$$M = S \cdot x = 3.00 \times 0.150 = 0.45 \text{ (kN} \cdot \text{m)}$$

(4) 地盤反力度

1) 載荷重あり

『 安定計算 』の結果より

$$q_1 = 107.68 \text{ (kN/m}^2\text{)}$$

$$q_2 = 13.42 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{l_2}{B} = 13.42 + (107.68 - 13.42) \times \frac{0.300}{1.850}$$

= 28.71 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(28.71 + 13.42) \times 0.300 \times 1.000}{2}$$

$$= 6.32 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.300}{3} \times \frac{2 \times 13.42 + 28.71}{13.42 + 28.71}$$
$$= 0.132 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 6.32 \times 0.132 = 0.83 \text{ (kN} \cdot \text{m)}$$

2) 載荷重なし

『 安定計算 』の結果より

$$q_1 = 99.43 \text{ (kN/m}^2\text{)}$$

$$q_2 = 2.54 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{1_2}{B} = 2.54 + (99.43 - 2.54) \times \frac{0.300}{1.850}$$

= 18.25 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(18.25 + 2.54) \times 0.300 \times 1.000}{2}$$
$$= 3.12 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.300}{3} \times \frac{2 \times 2.54 + 18.25}{2.54 + 18.25}$$
$$= 0.112 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 3.12 \times 0.112 = 0.35 (kN \cdot m)$$

8.3 設計断面力

かかと版中間部の曲げモーメントは

たて壁つけ根の曲げモーメントを超えないものとする。

1) 載荷重あり

		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN • m)
1	かかと版自重	0. 59	0.09
2	かかと版上の載荷土	14. 36	2. 15
3	地盤反力	-6. 32	-0.83
4	自動車荷重	3.00	0.45
	合 計 Σ	11.63	1.86

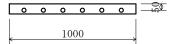
2) 載荷重なし

		せん断力	曲げモーメント
No	荷 重 名	S	M
<u> </u>		(kN)	(kN • m)
1	かかと版自重	0. 59	0.09
2	かかと版上の載荷土	14. 36	2. 15
3	地盤反力	-3. 12	-0. 35
	合 計 Σ	11.83	1. 89

実応力度計算には、以下の最大断面力を用いる。

せん断力

$$S = 11.83 \text{ (kN)}$$


曲げモーメント

$$M = 1.89 (kN \cdot m)$$

8.4 実応力度の計算

単鉄筋長方形断面で計算を行う。

有効幅 b = 1000 (mm)
有効高さ d = 50 (mm)
鉄筋量 As = D16 - 6.5
= 12.91 (cm
2
) = 1291 (mm 2)

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 1291}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 50}{15 \times 1291}} \right\}$$

$$= 28.7 \text{ (mm)}$$

設計断面力

実応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 1.89 \times 10^{6}}{1000 \times 28.7 \times (50 - \frac{28.7}{3})}$$

$$= 3.26 \text{ (N/mm}^{2}) \leq \sigma \text{ ca} = 10.00 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})} = \frac{1.89 \times 10^{6}}{1291 \times (50 - \frac{28.7}{3})}$$

$$= 36.2 \text{ (N/mm}^{2}) \leq \sigma \text{ sa} = 160 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$

$$\tau = \frac{S}{b \cdot d} = \frac{11.83 \times 10^{3}}{1000 \times 50}$$

$$= 0.24 \text{ (N/mm}^{2}) \leq \tau \text{ a}_{1} = 0.45 \text{ (N/mm}^{2}) \qquad 0. \text{ K.}$$