CLP-F (H) $1800 \times$ (B) $1350 \times$ (L) 2000

2011 年 7月

千葉窯業株式会社

目 次

§ 1	設計条件	1
§ 2	一般形状寸法図	2
§ 3	計算結果	3
§ 4	設計荷重	9
§ 5	安定計算	15
§ 6	たて壁の部材断面設計	24
§ 7	かかと版(つけ根)の部材断面設計	30
§ 8	かかと版(中間部)の部材断面設計	37

§1 設計条件

1.	1	設計条件	:

(1) 擁壁形式 プレキャストL型擁壁

(2) 基礎形式 直接基礎

(3) 擁壁高さ H = 1.800 (m)

(4) 土 圧 試行くさび法による土圧

(5) 地表面載荷重 $q = 10.0 (kN/m^2)$

(6) フェンス荷重 $H_h = 0.4$ (kN/m)

(7) 単位体積重量 製品 $\gamma c = 24.5$ (kN/m³)

1.2 土質条件

(1) 擁壁背面の裏込め土

せん断抵抗角 ϕ = 30.00 (°) 単位体積重量 γ s = 19.0 (kN/m^3)

(2) 支持地盤の定数

擁壁底版と基礎地盤の間の摩擦係数 μ = 0.577

U の粘着力 C = 0.0 (kN/m^2)

許容地盤反力度 qa = 75.57 (kN/m²) 以上必要

1.3 安定条件

(1) 滑動に対する検討 滑動安全率 Fs \geq 1.50 (1.20)

(2) 転倒に対する検討 偏心距離 | e | ≦ 1/6 B (1/3)

転倒安全率 Fs ≧ 1.50 (1.20)

※ ()はフェンス荷重時

1.4 材料強度及び許容応力度

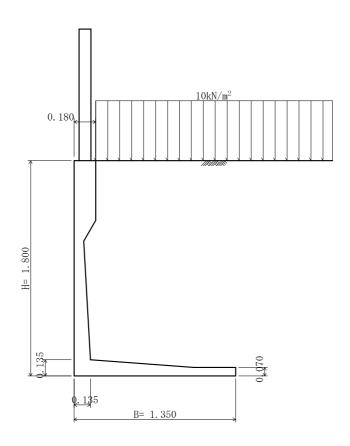
 (N/mm^2) 常 時 フェンス

(1) コンクリート

設計基準強度 σ ck 30 許容圧縮応力度 σ ca 10.00 12.00 許容せん断応力度 τ a 0.45 0.54

(2) 鉄筋

許容引張応力度 σ sa 160 192


1.5 参考文献

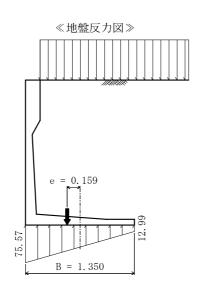
一、道路土工 — 擁壁工指針 (社)日本道路協会

§ 2 一般形状寸法図

2.1 一般図

製品名:CLP-F (H)1800×(B)1350×(L)2000 標準

§3 計算結果

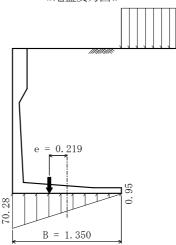

3.1 安定計算結果

安定計算は、滑動・転倒・支持の安定に対して検討を行った。

3.1.1 常 時 [載荷重あり]

(1) 安定計算

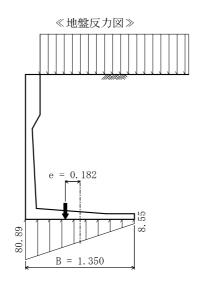
鉛直荷重	鉛直荷重 水平荷重		転 倒	滑動	地盤反	力度	
Σ V	ΣΗ	е	安全率	安全率	\mathbf{q}_1	\mathbf{q}_2	判定
(kN)	(kN)	(m)	Fs	Fs	(kN/m^2)		
59. 78	59. 78 16. 27		4. 16	2. 12	75. 57	12.99	O. K.
許	容値	0. 225	1. 50	1.50			



3.1.2 常 時 [載荷重なし]

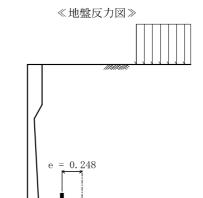
(1) 安定計算

	鉛直荷重	水平荷重	偏心距離	転 倒	滑動	地盤反	力度	
	$\sum V$	ΣΗ	e	安全率	安全率	\mathbf{q}_1	\mathbf{q}_2	判定
	(kN)	(kN)	(m)	Fs	Fs	(kN/m	2)	
ſ	48.08	16. 27	0. 219	3. 24	1.71	70. 28	0.95	O. K.
Ī	許	容値	0. 225	1.50	1.50			



3.1.3 フェンス荷重時 [載荷重あり]

(1) 安定計算


鉛直荷重	水平荷重	偏心距離	転 倒	滑動	地盤反	 力度	
ΣV	ΣΗ	e	安全率	安全率	\mathbf{q}_1	\mathbf{q}_2	判定
(kN)	(kN)	(m)	Fs	Fs	(kN/m^2)		
60. 37	60. 37 16. 67		3. 72	2.09	80. 89	8. 55	O. K.
許	容値	0.450	1. 20	1. 20			

3.1.4 フェンス荷重時 [載荷重なし]

(1) 安定計算

Γ	鉛直荷重	水平荷重	偏心距離	転 倒	滑動	地盤反力度	
	\sum V	Σ H	е	安全率	安全率	\mathbf{q}_1 \mathbf{q}_2	判定
L	(kN)	(kN)	(m)	Fs	Fs	(kN/m^2)	
Γ	48.67	16.67	0. 248	2. 90	1. 68	75. 99	O. K.
T	許	容値	0.450	1.20	1. 20		

B' = 1.281

3.2 断面計算結果

3.2.1 たて壁の断面計算

部材	項	=	常時	フェンス荷重時	
中間部	部 d	(mm) (mm)	1000 51		
	''''	(mm²)		- 6.5 324	
	面	(mm)	25	5. 2	
	断 曲げモ M m M	ーメント (N・mm)	0.61×10^{6}	1.29×10^{6}	
		カ (N)	2.72×10^{3}	3.12×10^{3}	
	コンクリートの 曲げ圧縮応力度	σс	1. 14	2. 40	
	(N/mm²)	σса	10.00	12. 00	
	鉄筋の 曲げ引張応力度	σѕ	17. 4	36. 7	
	(N/mm²)	σsa	160	192	
	コンクリートのせん断応力度	τ	0. 05	0.06	
	での例応力及 (N/mm²)	τса	0. 45	0. 54	

部材	項	∃	常時	フェンス荷重時		
つけ根	部 d	(mm)	1000 105 D13 - 6.5 824			
	材 断 As	(mm ²)				
	面	(mm)	40	. 1		
		ーメント (N・mm)	6.70×10^{6}	7.80×10^{6}		
	面 せん断た カ S	カ (N)	12.08×10^{3}	12.48×10^{3}		
	コンクリートの曲げ圧縮応力度	σс	3. 65	4. 25		
	(N/mm²)	σса	10. 00	12. 00		
	 鉄筋の 曲げ引張応力度	σs	88. 7	103. 3		
	(N/mm²)	σsa	160	192		
	コンクリートのせん断応力度	τ	0. 12	0. 12		
	での例が7万度 (N/mm²)	τса	0. 45	0. 54		

3.2.2 底版の断面計算

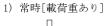
(1) かかと版

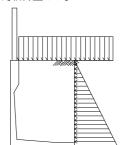
部材	項	1	常時	フェンス荷重時	
つけ根	部 d	(mm) (mm)	1000 105		
	1 1	(mm²)		- 6.5 324	
İ	面	(mm)	40). 1	
	断 曲げモー M 面 NA ME	-メント (N・mm)	6.70 × 10 ⁶	7.81×10^{6}	
	m せん断た カ S	り (N)	3.40×10^{3}	3.46×10^{3}	
	コンクリートの曲げ圧縮応力度	σс	3. 65	4. 25	
	(N/mm²)	σса	10.00	12. 00	
	 鉄筋の 曲げ引張応力度	σs	88. 7	103. 4	
	(N/mm²)	σsa	160	192	
	コンクリートのせん断応力度	τ	0.03	0.03	
	でん例がJJB (N/mm²)	τса	0. 45	0. 54	

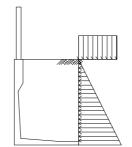
部	材	項	E	1	常	時	フェンス荷重時
中	間	容	b d	(mm) (mm)	1000 40		
			As	(mm²)	D13 - 6.5 824		
1		面	X	(mm)		21	. 4
				-メント (N・mm)	1. 70	× 10 ⁶	1.90 × 10 ⁶
		カーせ	:ん断ナ S	(N)	8.64	\times 10 ³	9.78×10^{3}
		コンクリー 曲げ圧縮応		σс	4.8	3	5. 40
		(N/m		σса	10.0	0	12. 00
		鉄筋の 曲げ引張応	- 九 庇	σѕ	62. 8		70. 2
		(N/m		σsa	160		192
		コンクリートの せん断応力度		τ	0. 2	2	0. 24
		でいるい。 (N/m		τса	0. 4	5	0. 54

§ 4 設計荷重

擁壁に作用する荷重は、以下の荷重を考える。

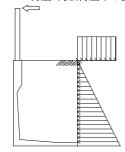

- 自 重
- ・載 荷 重
- ・土 圧
- ・フェンス荷重


4.1 荷重の組合せ

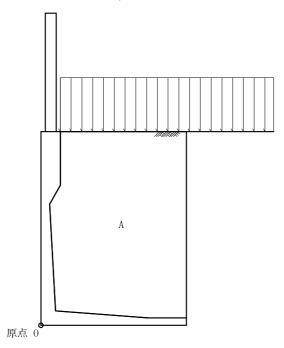

以下の組合せについて設計を行う。

自重(+載荷重)+土圧 フェンス荷重時 自重(+載荷重)+土圧+フェンス荷重

4.1.1 荷重の組合せ一覧



2) 常時[載荷重なし] 3) フェンス荷重時[載荷重あり]



4) フェンス荷重時[載荷重なし]

4.2 荷重の計算

擁壁に作用する荷重の、鉛直荷重V、水平荷重H、および、原点0に対する作用位置 (x, y)の計算を奥行き長 1.000 m あたりで行なう。

4.2.1 自重

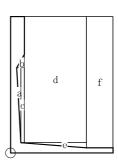
(1) 躯体

1) 製品

記		幅	高さ	面積	重 心	位 置	断面一次平	モーメント
				A	X	у	A • x	A • y
号		(m)	(m)	(m^2)	(m)	(m)	(m³)	(m³)
		1.350×	1.800=	2. 430	0.675	0.900	1. 6403	2. 1870
а	$-1/2 \times$	$0.055 \times$	0.991=	- 0.027	0.117	0. 796	-0.0032	-0.0215
b	$-1/2 \times$	$0.100 \times$	0.174=	- 0.009	0. 147	1.184	-0.0013	-0.0107
С	-	$0.045 \times$	0.991=	- 0. 045	0.158	0.631	-0.0071	-0.0284
d	_	$0.820 \times$	1.665=	- 1. 365	0. 590	0.968	-0.8054	-1.3213
е	$-1/2 \times$	0.865 \times	0.065=	- 0. 028	0.712	0.113	-0.0199	-0.0032
f	_	$0.350 \times$	1.730=	-0.606	1. 175	0. 935	-0.7121	-0. 5666
合	計			0.350			0.0913	0. 2353

体積

$$V_0 = \Sigma A \cdot L = 0.350 \times 1.000 = 0.350 \text{ (m}^3\text{)}$$


$$V = V_0 \cdot \gamma_c = 0.350 \times 24.5 = 8.58 \text{ (kN)}$$

作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{0.0913}{0.350} = 0.261 \text{ (m)}$$

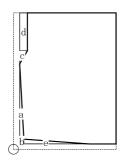
$$y = \frac{\sum A \cdot y}{\sum A} = \frac{0.2353}{0.350} = 0.672 \text{ (m)}$$

$$y = \frac{\sum A \cdot y}{\sum A} = \frac{0.2353}{0.350} = 0.672$$
 (m)

(2) 載荷土

1) 裏込め土

記		幅	高さ	面積	重 心	位 置	断面一次円	モーメント
1				A	X	У	A • x	А•у
号		(m)	(m)	(m^2)	(m)	(m)	(m³)	(m³)
		1.270×	1. 730=	2. 197	0.715	0. 935	1. 5709	2.0542
а	$-1/2 \times$	$0.055 \times$	0.991=	- 0.027	0.098	0.465	-0.0026	- 0. 0126
b	_	$0.055 \times$	0.065=	-0.004	0.108	0.103	-0.0004	-0.0004
С	$-1/2 \times$	$0.100 \times$	0.174=	-0.009	0.113	1. 242	-0.0010	- 0. 0112
d	_	0.100×	0.500=	-0.050	0.130	1.550	-0.0065	-0.0775
е	$-1/2 \times$	$0.865 \times$	0.065=	- 0. 028	0.423	0.092	-0.0118	-0.0026
合	計			2.079			1.5486	1. 9499


体積

$$V_0 = \Sigma A \cdot L = 2.079 \times 1.000 = 2.079 \text{ (m}^3)$$

$$V = V_0 \cdot \gamma_S = 2.079 \times 19.0 = 39.50 \text{ (kN)}$$

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{1.5486}{2.079} = 0.745 \text{ (m)}$$

$$y = \frac{\sum A \cdot y}{\sum A} = \frac{1.9499}{2.079} = 0.938 \text{ (m)}$$

4.2.2 載荷重

地表面載荷重のうち擁壁上に載るものを鉛直荷重として考慮する。

(1) 常 時

荷重

$$V = q \cdot b \cdot L = 10.0 \times 1.170 \times 1.000 = 11.70 \text{ (kN)}$$

$$x = B - \frac{b}{2} = 1.350 - \frac{1.170}{2} = 0.765 (m)$$

4.2.3 土圧

土圧の計算は、試行くさび法により行う。また、土圧は三角形分布するものとする。

主働土圧合力

$$Pa = \frac{\mathbb{W} \cdot \sin(\omega - \phi)}{\cos(\omega - \phi - \delta - \alpha)}$$

ここに、

Pa : 主働土圧合力 (kN/m)

W : 土くさびの重量 (kN/m)

ω : すべり角 (°)

φ : 裏込め土のせん断抵抗角 (°)

δ : 壁面摩擦角 (°)

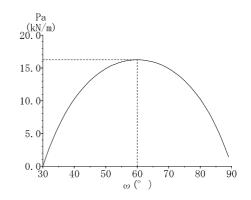
α: 土圧作用面と鉛直面のなす角(°)

鉛直荷重・水平荷重

$$V = Pa \cdot \sin(\delta + \alpha) \cdot L$$

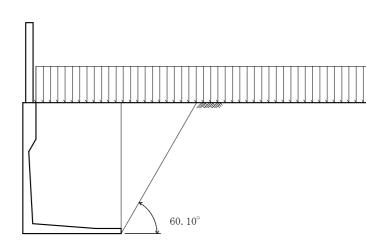
$$H = Pa \cdot \cos(\delta + \alpha) \cdot L$$

ここに、


V , H : 鉛直荷重, 水平荷重 (kN)

L: 擁壁の奥行き(計算幅) L=1.000 (m)

$$h = 1.800 (m)$$


(1) 常 時

$$\alpha$$
 = 0.00 (°)
 W = 28.06 (kN/m) [載荷重: 10.35]
 ω = 60.10 (°)
 δ = 0.00 (°)
 ϕ = 30.00 (°)

最大主働土圧合力

Pa =
$$\frac{28.06 \times \sin(60.10 - 30.00)}{\cos(60.10 - 30.00 - 0.00 - 0.00)}$$
$$= 16.27 \text{ (kN/m)}$$

	ω	Pa	W
	65.00	15. 923	22.74
	64.00	16. 047	23. 79
	63.00	16. 138	24.85
	62.00	16. 203	25. 93
	61.00	16. 247	27.04
*	60.10	16. 266	28.06
	60.00	16. 258	28. 16
	59.00	16. 241	29. 30
	58.00	16. 207	30.48
	57.00	16. 142	31.68
	56.00	16. 051	32. 91

鉛直荷重

$$V = 16.27 \times \sin(0.00 - 0.00) \times 1.000 = 0.00 \text{ (kN)}$$

水平荷重

$$H = 16.27 \times \cos(0.00 - 0.00) \times 1.000 = 16.27 \text{ (kN)}$$

作用位置

$$x = 1.350 \text{ (m)}$$

 $y = \frac{1.800}{3} = 0.600 \text{ (m)}$

(2) フェンス荷重時

『常 時』と同じ。

4.2.4 フェンス荷重

水平荷重

$$H = H_h \cdot L = 0.40 \times 1.000 = 0.40 \text{ (kN)}$$

作用位置

$$x = 0.090 \text{ (m)}$$

 $y = 1.800 + 1.100 = 2.900 \text{ (m)}$

§5 安定計算

算出した荷重を集計して、以下の安定計算を行う。

5.1 計算方法

1) 滑動に対する検討

滑動に対する安全率は次式により照査を行う。

$$Fs = \frac{$$
 滑動に対する抵抗力 $}{$ 滑動力 $} = \frac{\Sigma V \cdot \tan \delta \ + C \cdot B \cdot L}{\Sigma H} \ge Fsa$

ここに、

Fs : 滑動安全率

Fsa: 滑動安全率の許容値 常 時 Fsa = 1.50

フェンス荷重時 Fsa = 1.20

ΣV : 底版下面における全鉛直荷重 (kN)

ΣH : 水平荷重 (kN)

tan δ: 擁壁底版と基礎地盤の間の摩擦係数

 $\tan \delta = 0.577$

C: 擁壁底版と基礎地盤の間の粘着力 C = 0.0 (kN/m²)

 B
 : 擁壁の底版幅
 B = 1.350 (m)

 L
 : 擁壁の奥行き(計算幅)
 L = 1.000 (m)

2) 転倒に対する検討

転倒に対する安全率は次式により照査を行う。

$$F_{s} = \frac{\sum Mr}{\sum Mo} \ge F_{sa}$$

ここに、

Fs : 安全率

 ΣMr : 抵抗モーメント (kN・m) ΣMo : 転倒モーメント (kN・m)

Fsa: 転倒安全率の許容値 常 時 Fsa = 1.50 フェンス荷重時 Fsa = 1.20

つま先から合力の作用点までの距離 d および、合力の作用点の底版中央からの偏心距離 e は次式により求める。

$$d = \frac{\sum Mr - \sum Mo}{\sum V}$$

 $e = \frac{B}{2} - d$

ここに、

ΣV: 底版下面における全鉛直荷重 (kN)

 Σ Mr: つま先まわりの抵抗モーメント (kN・m) Σ Mo : つま先まわりの転倒モーメント (kN・m)

B : 擁壁の底版幅 B = 1.350 (m)

転倒に対する安定条件として、偏心距離 e は次式を満足するものとする。

常 時
$$|e| \le \frac{1}{6} B$$
 7 ェンス荷重時 $|e| \le \frac{1}{3} B$

3) 支持に対する検討

地盤反力度は次式により求める。

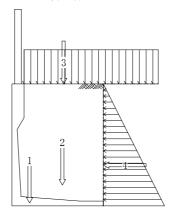
$$\begin{array}{lll} \mathrm{e} & > & \frac{\mathrm{B}}{\mathrm{6}} \ \mathcal{O} \ \mathcal{E} \ \mathcal{E} \end{array} \qquad \qquad \begin{array}{ll} \mathrm{q}_1 & = & \frac{2 \cdot \Sigma \mathrm{V}}{3 \cdot \mathrm{d} \cdot \mathrm{L}} \\ \\ \mathrm{I} \ \mathrm{e} \ \mathrm{I} & \leq & \frac{\mathrm{B}}{\mathrm{6}} \ \mathcal{O} \ \mathcal{E} \ \mathcal{E} \end{array} \qquad \qquad \begin{array}{ll} \mathrm{q}_1 & = & \frac{2 \cdot \Sigma \mathrm{V}}{\mathrm{B} \cdot \mathrm{L}} \ (1 \ \pm \ \frac{\mathrm{6} \cdot \mathrm{e}}{\mathrm{B}}) \\ \\ \mathrm{q}_2 & = & \frac{2 \cdot \Sigma \mathrm{V}}{3 \cdot (\mathrm{B} - \mathrm{d}) \cdot \mathrm{L}} \end{array}$$

ここに、

q1,q2 : 地盤反力度 (kN/m²)

ΣV : 鉛直荷重 (kN)

B : 擁壁の底版幅 B = 1.350 (m)


L : 擁壁の奥行き(計算幅) L = 1.000 (m) e : 合力の作用点の底版中央からの偏心距離 (m) d : つま先から合力の作用点までの距離 (m)

5.2 計算結果

5.2.1 常 時 [載荷重あり]

				荷	重	作用	位置	モーノ	ベント
No	荷	重	名	鉛直 V	水平H	Х	У	抵抗 Mr	転倒 Mo
				(kN)	(kN)	(m)	(m)	(kN • m)	(kN • m)
1	躯体			8. 58		0. 261	0.672	2. 24	
2	裏込め	生		39. 50		0.745	0. 938	29. 43	
3	載荷』	î.		11.70		0.765	1.800	8. 95	
4	土圧				16. 27	1.350	0.600		9. 76
		合	· 計 Σ	59. 78	16. 27			40.62	9. 76

≪荷重作用図≫

1) 滑動に対する安定

$$F_{S} = \frac{\sum V \cdot \mu + c \cdot B \cdot L}{\sum H} = \frac{59.78 \times 0.577 + 0.0 \times 1.350 \times 1.000}{16.27}$$
$$= 2.12 \ge F_{Sa} = 1.5$$

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$F_S = \frac{\Sigma Mr}{\Sigma Mo} = \frac{40.62}{9.76} = 4.16 \ge F_{SA} = 1.50$$

よって、転倒安全率は安定条件を満足している。

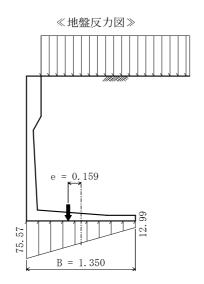
つま先から合力Rの作用点までの距離

$$d = \frac{\Sigma Mr - \Sigma Mo}{\Sigma V} = \frac{40.62 - 9.76}{59.78} = 0.516 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

$$e = \frac{B}{2} - d = \frac{1.350}{2} - 0.516 = 0.159 \text{ (m)}$$

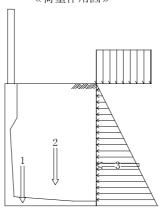
 $|e| = 0.159 \text{ (m)} \le \frac{1}{6} \cdot B = 0.225 \text{ (m)}$


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

$$\begin{array}{l} q_1 \\ q_2 \end{array} = \frac{\sum V}{B \cdot L} \ (1 \pm \frac{6 \cdot e}{B}) \ = \frac{59.78}{1.350 \ \times \ 1.000} \ \times \ (1 \ \pm \ \frac{6 \ \times \ 0.159}{1.350} \) \\ = \ \{ \begin{array}{l} 75.57 \ (kN/m^2 \) \\ 12.99 \ (kN/m^2 \) \end{array} \end{array}$$


よって、上記の値以上の支持力が必要である。

5.2.2 常 時 [載荷重なし]

				荷	重	作用	位置	モーノ	ベント
No	荷	重	名	鉛直 V	水平 H	Х	У	抵抗 Mr	転倒 Mo
				(kN)	(kN)	(m)	(m)	(kN • m)	(kN • m)
1	躯体			8. 58		0.261	0.672	2. 24	
2	裏込め	土		39. 50		0.745	0. 938	29. 43	
3	土圧				16. 27	1.350	0.600		9. 76
		合	計Σ	48.08	16. 27			31.67	9. 76

≪荷重作用図≫

1) 滑動に対する安定

Fs =
$$\frac{\Sigma V \cdot \mu + c \cdot B \cdot L}{\Sigma H}$$
 = $\frac{48.08 \times 0.577 + 0.0 \times 1.350 \times 1.000}{16.27}$
= 1.71 \geq Fsa = 1.5

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$F_{S} = \frac{\Sigma Mr}{\Sigma Mo} = \frac{31.67}{9.76} = 3.24 \ge F_{Sa} = 1.50$$

よって、転倒安全率は安定条件を満足している。

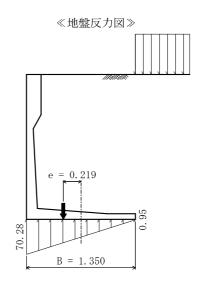
つま先から合力Rの作用点までの距離

$$d = \frac{\Sigma Mr - \Sigma Mo}{\Sigma V} = \frac{31.67 - 9.76}{48.08} = 0.456 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

$$e = \frac{B}{2} - d = \frac{1.350}{2} - 0.456 = 0.219$$
 (m)

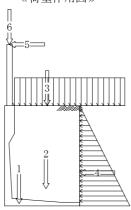
$$|e| = 0.219 \text{ (m)} \leq \frac{1}{6} \cdot B = 0.225 \text{ (m)}$$


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

$$\begin{array}{l} q_1 \\ q_2 \end{array} = \begin{array}{l} \frac{\sum V}{B \cdot L} \ (1 \pm \frac{6 \cdot e}{B}) \ = \frac{48.08}{1.350 \times 1.000} \times (1 \pm \frac{6 \times 0.219}{1.350}) \\ = \ \{ \begin{array}{l} 70.28 \ (kN/m^2) \\ 0.95 \ (kN/m^2) \end{array} \end{array}$$


よって、上記の値以上の支持力が必要である。

5.2.3 フェンス荷重時 [載荷重あり]

		荷	重	作用	位置	モーノ	マント
No	荷 重 名	鉛直 V	水平H	Х	у	抵抗 Mr	転倒 Mo
		(kN)	(kN)	(m)	(m)	(kN·m)	$(kN \cdot m)$
1	躯体	8. 58		0.261	0.672	2. 24	
2	裏込め土	39. 50		0.745	0. 938	29. 43	
3	載荷重	11. 70		0.765	1.800	8. 95	
4	土圧		16. 27	1.350	0.600		9. 76
5	フェンス荷重		0.40	0.090	2. 900		1. 16
6		0. 59		0.090	2. 900	0.05	
	合計 Σ	60.37	16.67			40. 67	10. 92

1) 滑動に対する安定

$$F_{S} = \frac{\sum V \cdot \mu + c \cdot B \cdot L}{\sum H} = \frac{60.37 \times 0.577 + 0.0 \times 1.350 \times 1.000}{16.67}$$
$$= 2.09 \ge F_{Sa} = 1.2$$

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$F_{S} = \frac{\Sigma Mr}{\Sigma Mo} = \frac{40.67}{10.92} = 3.72 \ge F_{SA} = 1.20$$

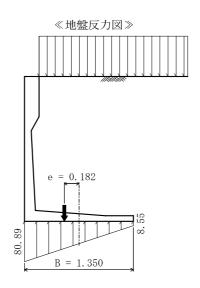
よって、転倒安全率は安定条件を満足している。

つま先から合力Rの作用点までの距離
$$d = \frac{\Sigma \, \text{Mr} - \Sigma \, \text{Mo}}{\Sigma \, \text{V}} = \frac{40.67 - 10.92}{60.37} = 0.493 \, \text{(m)}$$

合力Rの作用点の底版中央からの偏心距離

$$e = \frac{B}{2} - d = \frac{1.350}{2} - 0.493 = 0.182$$
 (m)

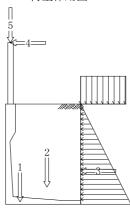
$$|e| = 0.182 \text{ (m)} \leq \frac{1}{3} \cdot B = 0.450 \text{ (m)}$$


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

$$\begin{array}{l} q_1 \\ q_2 \end{array} = \frac{\sum V}{B \cdot L} \; (1 \pm \frac{6 \cdot e}{B}) \; = \frac{60.37}{1.350 \; \times \; 1.000} \; \times \; (\; 1 \; \pm \; \frac{6 \; \times \; 0.182}{1.350} \;) \\ = \; \{ \begin{array}{c} 80.89 \; (kN/m^2 \,) \\ 8.55 \; (kN/m^2 \,) \end{array} \end{array}$$


よって、上記の値以上の支持力が必要である。

5.2.4 フェンス荷重時 [載荷重なし]

		荷	重	作用	位置	モーノ	マント
No	荷 重 名	鉛直 V	水平H	Х	у	抵抗 Mr	転倒 Mo
		(kN)	(kN)	(m)	(m)	(kN·m)	$(kN \cdot m)$
1	躯体	8. 58		0.261	0.672	2. 24	
2	裏込め土	39. 50		0.745	0. 938	29. 43	
3	土圧		16. 27	1.350	0.600		9. 76
4	フェンス荷重		0.40	0.090	2. 900		1. 16
5		0. 59		0.090	2.900	0.05	
	合計 Σ	48.67	16.67			31. 72	10. 92

1) 滑動に対する安定

$$Fs = \frac{\sum V \cdot \mu + c \cdot B \cdot L}{\sum H} = \frac{48.67 \times 0.577 + 0.0 \times 1.350 \times 1.000}{16.67}$$
$$= 1.68 \ge Fsa = 1.2$$

よって、滑動安全率は安定条件を満足している。

2) 転倒に対する安定

$$F_{S} = \frac{\Sigma Mr}{\Sigma Mo} = \frac{31.72}{10.92} = 2.90 \ge F_{Sa} = 1.20$$

よって、転倒安全率は安定条件を満足している。

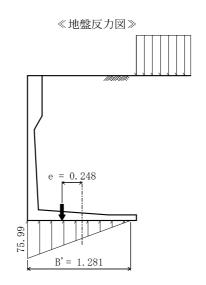
つま先から合力Rの作用点までの距離

$$d = \frac{\Sigma Mr - \Sigma Mo}{\Sigma V} = \frac{31.72 - 10.92}{48.67} = 0.427 \text{ (m)}$$

合力Rの作用点の底版中央からの偏心距離

$$e = \frac{B}{2} - d = \frac{1.350}{2} - 0.427 = 0.248$$
 (m)

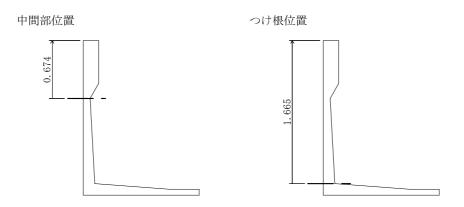
$$|\mathbf{e}|$$
 = 0.248 (m) $\leq \frac{1}{3} \cdot \mathbf{B} = 0.450$ (m)


よって、偏心距離は安定条件を満足している。

3) 支持に対する安定

最大地盤反力度

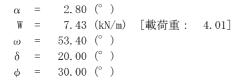
$$q_1 = \frac{2 \cdot \Sigma V}{3 \cdot d \cdot L} = \frac{2 \times 48.67}{3 \times 0.427 \times 1.000}$$
$$= 75.99 (kN/m^2)$$

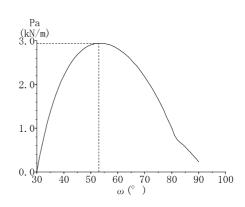

よって、上記の値以上の支持力が必要である。

§6 たて壁の部材断面設計

たて壁は、底版との接合部を固定端とする片持版で設計する。

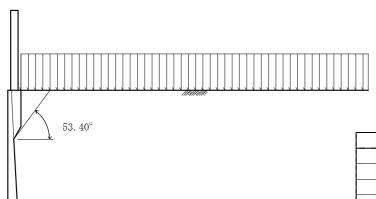
6.1 断面検討位置


6.2 荷重の計算

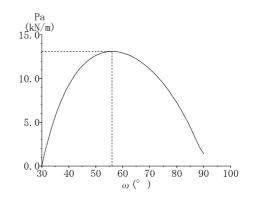

たて壁に作用する荷重は、以下の荷重を考慮し、たて壁自重および土圧の鉛直分力は無視する。

6.2.1 土圧

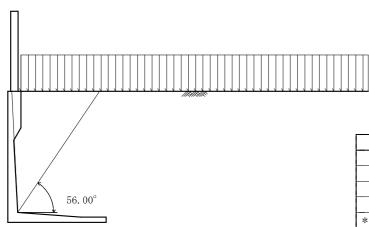
(1) 常 時


1) 中間部

最大主働土圧合力


Pa =
$$\frac{7.43 \times \sin(53.40 - 30.00)}{\cos(53.40 - 30.00 - 20.00 - 2.80)}$$
= 2.95 (kN/m)

ω	Pa	W
58.00	2.885	6. 12
57.00	2. 913	6.40
56.00	2. 924	6.66
55.00	2. 939	6. 95
54.00	2. 945	7. 24
* 53.40	2. 951	7. 43
53.00	2. 946	7. 54
52.00	2. 945	7.86
51.00	2. 926	8. 16
50.00	2. 907	8.49
49.00	2.881	8. 83


2) つけ根

 $\alpha = 2.80 (^{\circ})$ W = 29.84 (kN/m) [載荷重: 10.78] $\omega = 56.00 (^{\circ})$ $\delta = 20.00 (^{\circ})$ $\phi = 30.00 (^{\circ})$

最大主働土圧合力

Pa =
$$\frac{29.84 \times \sin(56.00 - 30.00)}{\cos(56.00 - 30.00 - 20.00 - 2.80)}$$
$$= 13.10 \text{ (kN/m)}$$

ω	Pa	W
60.00	12. 927	25.65
59.00	13. 006	26.67
58.00	13. 058	27. 70
57.00	13. 087	28.75
* 56.00	13. 101	29.84
55.00	13. 081	30. 93
54.00	13. 047	32.07
53.00	12. 980	33, 22
52. 00	12. 899	34. 43

 $H = Pa \cdot cos(\delta + \alpha) \cdot L$

ここに、

L : 擁壁の奥行き (計算幅) L = 1.000 (m)

	土圧力	摩擦角	傾斜角	水平荷重	作用位置
	Pa	δ	α	Н	у
	(kN/m)	(°)	(°)	(kN)	(m)
中間部	2. 95	20.00	2.80	2. 72	0. 225
つけ根	13. 10	20.00	2.80	12.08	0. 555

(2) フェンス荷重時

『常 時』と同じ。

6.2.2 フェンス荷重

『設計荷重』のフェンス荷重より

	鉛直荷重	水平荷重	作用位置(m)	
	V	Н		
	(kN)	(kN)	X	у
中間部	0.00	0.40	0.090	1. 774
つけ根	0.00	0.40	0.090	2. 765

6.3 設計断面力

(1) 常 時

			荷重		作用位置		モーメント			
No	荷	重	名		鉛直 V	水平H	X	у	抵抗 Mr	転倒 Mo
					(kN)	(kN)	(m)	(m)	(kN • m)	(kN • m)
1	土圧					2.72	0.029	0. 225		0. 61
		合	計	Σ		2.72				0.61
1	土圧					12.08	0.040	0. 555		6. 70
		合	計	Σ		12.08		·		6. 70

(2) フェンス荷重時

		荷	重	作用	位置	モーノ	マント
No	荷 重 名	鉛直 V	水平 H	X	У	抵抗 Mr	転倒 Mo
		(kN)	(kN)	(m)	(m)	(kN • m)	(kN • m)
1	フェンス荷重		0.40	0.050	1.774		0.71
2	土圧		2.72	0.029	0. 225		0.61
3	フェンス荷重	0. 59		0.050	1.774	0.03	
	合計 Σ	0. 59	3. 12			0.03	1. 32
1	フェンス荷重		0.40	0.022	2. 765		1.11
2	土圧		12.08	0.040	0. 555		6.70
3	フェンス荷重	0. 59		0.022	2. 765	0.01	
	合計 Σ	0.59	12.48			0.01	7.81

設計断面力を次式により算出する。

 $M = \sum Mo - \sum Mr$

中間部

 $M = 1.32 - 0.03 = 1.29 \text{ (kN} \cdot \text{m)}$

つけ根

 $M = 7.81 - 0.01 = 7.8 \text{ (kN} \cdot \text{m)}$

6.4 実応力度の計算

(1) 中間部

単鉄筋長方形断面で計算を行う。

有効幅
$$b=1000 \text{ (mm)}$$

有効高さ $d=51 \text{ (mm)}$
鉄筋量 $As=D13-6.5$
 $=8.24 \text{ (cm}^2)=824 \text{ (mm}^2)$

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 824}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 51}{15 \times 824}} \right\}$$

$$= 25.2 \text{ (mm)}$$

実応力度は以下の式により求める。

コンクリートの曲げ圧縮応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})}$$

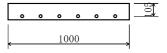
鉄筋の曲げ引張応力度

$$\sigma_{S} = \frac{M}{\text{As} \cdot \left(d - \frac{x}{3}\right)}$$

コンクリートのせん断応力度

$$\tau = \frac{S}{b \cdot d}$$

ここに、


b : 断面の有効幅 (mm) M : 曲げモーメント(N・mm) d : 断面の有効高さ (mm) S : せん断力 (N)

As : 鉄筋量 (mm²)

ņ	頁	1	常時	フェンス荷重時	
断	曲げモー M	-メント (N・mm)	0.61×10^{6}	1.29×10^{6}	
面 力	せん断フ S	(N)	2.72×10^{3}	3.12×10^{3}	
コンクリートの曲げ圧縮応力度		σс	1. 14	2.40	
1	旧ルングラ N/mm²)	σса	10.00	12.00	
鉄筋の	長応力度	σs	17. 4	36. 7	
1	区がフガタ N/mm²)	σsa	160	192	
コンクリせん断原	リートの	τ	0. 05	0.06	
	い力及 N/mm²)	τса	0. 45	0. 54	

(2) つけ根

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 824}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 105}{15 \times 824}} \right\}$$

$$= 40.1 \text{ (mm)}$$

実応力度は以下の式により求める。

コンクリートの曲げ圧縮応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})}$$

鉄筋の曲げ引張応力度

$$\sigma_{S} = \frac{M}{\text{As} \cdot \left(d - \frac{X}{3}\right)}$$

コンクリートのせん断応力度

$$\tau = \frac{S}{b \cdot d}$$

ここに、

せん断応力度 (N/mm²)

b : 断面の有効幅 (mm) M : 曲げモーメント(N・mm) d : 断面の有効高さ (mm) S : せん断力 (N)

As : 鉄筋量 (mm²)

項 目 常時 フェンス荷重時 曲げモーメント 断 6.70×10^{6} 7.80×10^{6} $M (N \cdot mm)$ 面 せん断力 力 12.08×10^{3} 12.48×10^{3} S (N) コンクリートの 3.65 4. 25 曲げ圧縮応力度 (N/mm^2) 10.00 12.00 σca 鉄筋の 88.7 103.3 σ s 曲げ引張応力度 (N/mm^2) σsa 160 192 コンクリートの 0.12 τ 0.12

0.45

 τ ca

0.54

§7 かかと版(つけ根)の部材断面設計

かかと版(つけ根)は、たて壁との接合部を固定端とする片持版として設計する。

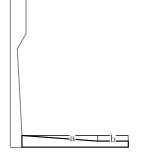
7.1 断面検討位置

7.2 荷重の計算

かかと版に作用する荷重は、以下の荷重を考慮する。

(1) かかと版自重

-	記			高さ	面積	重心位置	断面一次
	пЦ		Ψ	回口	四個	里心"四世	
					A	X	モーメント
	号		(m)	(m)	(m^2)	(m)	$A \cdot x (m^3)$
			$1.215 \times$	0.135=	0.164	0.608	0. 0997
	а	$-1/2 \times$	$0.865 \times$	0.065=	- 0. 028	0. 577	- 0. 0162
	b	-	$0.350 \times$	0.065=	- 0. 023	1.040	-0.0239
	合	計			0.113		0.0596


作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{0.0596}{0.113} = 0.527$$
 (m)

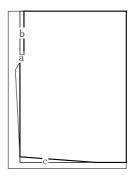
せん断力

S = A・
$$\gamma$$
 c・L = 0.113 × 24.5 × 1.000 = 2.77 (kN) 曲げモーメント

$$M = S \cdot x = 2.77 \times 0.527 = 1.46 \text{ (kN} \cdot \text{m)}$$

(2) かかと版上の載荷土

記		幅	高さ	面積	重心位置	断面一次
				A	х	モーメント
号		(m)	(m)	(m^2)	(m)	$A \cdot x (m^3)$
		1.215×	1.730=	2. 102	0.608	1. 2780
a	$-1/2 \times$	$0.045 \times$	0.078=	- 0.002	0.015	0.0000
b	_	$0.045 \times$	0.500=	- 0. 023	0.023	-0.0005
С	$-1/2 \times$	$0.865 \times$	0.065=	- 0. 028	0. 288	-0.0081
合	計			2.049		1. 2694


作用位置

$$x = \frac{\sum A \cdot x}{\sum A} = \frac{1.2694}{2.049} = 0.620$$
 (m)

せん断力

S = A・
$$\gamma$$
s・L = 2.049 × 19.0 × 1.000 = 38.93 (kN) 曲げモーメント

$$M = S \cdot x = 38.93 \times 0.620 = 24.14 \text{ (kN} \cdot \text{m)}$$

(3) 地表面載荷重

1) 常 時

荷重強度

$$q = 10.00 (kN/m^2)$$

せん断力

$$S = q \cdot b \cdot L = 10.00 \times 1.170 \times 1.000 = 11.70 \text{ (kN)}$$

作用位置

$$x = 0.630 (m)$$

$$M = S \cdot x = 11.70 \times 0.630 = 7.37 \text{ (kN} \cdot \text{m)}$$

(4) 地盤反力度

1) 常 時[載荷重あり]

『安定計算』の結果より

$$q_1 = 75.57 (kN/m^2)$$

$$q_1 = 75.57 \text{ (kN/m}^2\text{)}$$

 $q_2 = 12.99 \text{ (kN/m}^2\text{)}$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{1_2}{B} = 12.99 + (75.57 - 12.99) \times \frac{1.215}{1.350}$$

= 69.31 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(69.31 + 12.99) \times 1.215 \times 1.000}{2}$$
$$= 50.00 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{1.215}{3} \times \frac{2 \times 12.99 + 69.31}{12.99 + 69.31}$$
$$= 0.469 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 50.00 \times 0.469 = 23.45 \text{ (kN} \cdot \text{m)}$$

2) 常 時 [載荷重なし]

『 安定計算 』の結果より

$$q_1 = 70.28 \text{ (kN/m}^2)$$

$$\begin{array}{rcl} q_1 & = & 70.28 & (kN/m^2) \\ q_2 & = & 0.95 & (kN/m^2) \end{array}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{1_2}{B} = 0.95 + (70.28 - 0.95) \times \frac{1.215}{1.350} = 63.35 \text{ (kN/m}^2)$$

せん断力

$$S = \frac{(q_3 + q_2) \cdot 1_2 \cdot L}{2} = \frac{(63.35 + 0.95) \times 1.215 \times 1.000}{2}$$

$$=$$
 39.06 (kN)

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{1.215}{3} \times \frac{2 \times 0.95 + 63.35}{0.95 + 63.35}$$
$$= 0.411 \text{ (m)}$$

$$M = S \cdot x = 39.06 \times 0.411 = 16.05 (kN \cdot m)$$

3) フェンス荷重時 [載荷重あり]

『 安定計算 』の結果より

$$q_1 = 80.89 \text{ (kN/m}^2\text{)}$$

$$q_1 = 80.89 (kN/m^2)$$

 $q_2 = 8.55 (kN/m^2)$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{1_2}{B} = 8.55 + (80.89 - 8.55) \times \frac{1.215}{1.350}$$

= 73.66 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(73.66 + 8.55) \times 1.215 \times 1.000}{2}$$

$$= 49.94 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{1.215}{3} \times \frac{2 \times 8.55 + 73.66}{8.55 + 73.66}$$
$$= 0.447 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 49.94 \times 0.447 = 22.32 (kN \cdot m)$$

4) フェンス荷重時「載荷重なし]

『 安定計算 』の結果より

$$q_1 = 75.99 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_1 \cdot \frac{1_2}{B'} = 75.99 \times \frac{1.146}{1.281}$$

$$=$$
 67.98 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(67.98 + 0.00) \times 1.146 \times 1.000}{2}$$
$$= 38.95 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{1.146}{3} \times \frac{2 \times 0.00 + 67.98}{0.00 + 67.98}$$
$$= 0.382 \text{ (m)}$$

$$M = S \cdot x = 38.95 \times 0.382 = 14.88 (kN \cdot m)$$

7.3 設計断面力

(1) 常 時

1) 載荷重あり

No	荷 重 名	せん断力	曲げモーメント M
INO		(kN)	(kN·m)
1	かかと版自重	2. 77	1. 46
2	かかと版上の載荷土	38. 93	24. 14
3	地盤反力	-50.00	-23. 45
4	自動車荷重	11. 70	7. 37
	合 計 Σ	3. 40	9. 52

2) 載荷重なし

		せん断力	曲げモーメント
No	荷 重 名	S	M
l		(kN)	(kN • m)
1	かかと版自重	2. 77	1.46
2	かかと版上の載荷土	38. 93	24. 14
3	地盤反力	-39.06	-16. 05
	合 計 Σ	2. 64	9. 55

断面計算に用いる曲げモーメントは、たて壁つけ根の曲げモーメント $Mo=6.70~(kN\cdot m)$ とする。 実応力度計算には、以下の最大断面力を用いる。

せん断力

$$S = 3.40 (kN)$$

曲げモーメント

$$M = 6.70 (kN \cdot m)$$

(2) フェンス荷重時

1) 載荷重あり

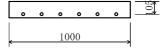
No	荷 重 名	せん断力 S (kN)	曲げモーメント M (kN・m)
1	かかと版自重	2. 77	1.46
2	かかと版上の載荷土	38. 93	24. 14
3	地盤反力	-49. 94	- 22. 32
4	自動車荷重	11. 70	7. 37
	合 計 Σ	3. 46	10.65

2) 載荷重なし

Γ			せん断力	曲げモーメント
١	No	荷 重 名	S	M
١			(kN)	(kN·m)
Γ	1	かかと版自重	2. 77	1. 46
	2	かかと版上の載荷土	38. 93	24. 14
	3	地盤反力	-38. 95	-14. 88
Γ		合 計 Σ	2. 75	10.72

断面計算に用いる曲げモーメントは、たて壁つけ根の曲げモーメント $Mo=7.81~(kN\cdot m)$ とする。 実応力度計算には、以下の最大断面力を用いる。

せん断力


S = 3.46 (kN)

曲げモーメント

 $M = 7.81 \text{ (kN} \cdot \text{m)}$

7.4 実応力度の計算

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 824}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 105}{15 \times 824}} \right\}$$

$$= 40.1 \text{ (mm)}$$

実応力度は以下の式により求める。

コンクリートの曲げ圧縮応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})}$$

鉄筋の曲げ引張応力度

$$\sigma s = \frac{M}{As \cdot (d - \frac{x}{3})}$$

コンクリートのせん断応力度

$$\tau = \frac{S}{b \cdot d}$$

ここに、

b : 断面の有効幅 (mm) M : 曲げモーメント(N・mm) d : 断面の有効高さ (mm) S : せん断力 (N)

As : 鉄筋量 (mm²)

I	頁	1	常時	フェンス荷重時
断	曲げモ- M	ーメント (N・mm)	6. 70 × 10 ⁶	7.81 × 10 ⁶
力	せん断フ S	ל (N)	3.40×10^{3}	3.46×10^{3}
	 リートの 宿応力度	σс	3. 65	4. 25
	相ルングラ (N/mm²)	σса	10.00	12.00
鉄筋の	長応力度	σs	88. 7	103. 4
1	R/IC/J/及 (N/mm²)	σsa	160	192
コンクリせん断り	リートの さカ度	τ	0. 03	0. 03
i	い力及 (N/mm²)	τса	0. 45	0. 54

§8 かかと版(中間部)の部材断面設計

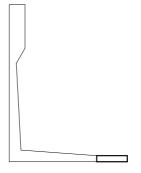
かかと版(中間部)は、下の指定位置を固定端とする片持版として設計する。

8.1 断面検討位置

8.2 荷重の計算

かかと版に作用する荷重は、以下の荷重を考慮する。

(1) かかと版自重


面積

$$A = b \cdot h = 0.350 \times 0.070 = 0.025 (m^2)$$

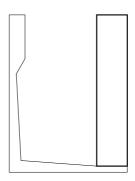
せん断力

S = A・
$$\gamma$$
 c・L = 0.025 × 24.5 × 1.000 = 0.61 (kN) 曲げモーメント

 $M = S \cdot x = 0.61 \times 0.175 = 0.11 (kN \cdot m)$

(2) かかと版上の載荷土

面積


$$A = b \cdot h = 0.350 \times 1.730 = 0.606 \text{ (m}^2\text{)}$$

せん断力

S = A •
$$\gamma$$
 s • L = 0.606 × 19.0 × 1.000 = 11.51 (kN)

曲げモーメント

$$M = S \cdot x = 11.51 \times 0.175 = 2.01 (kN \cdot m)$$

(3) 地表面載荷重

1) 常 時

荷重強度

$$q = 10.00 (kN/m^2)$$

せん断力

$$S = q \cdot b \cdot L = 10.00 \times 0.350 \times 1.000 = 3.50 \text{ (kN)}$$

作用位置

$$x = 0.175 (m)$$

曲げモーメント

$$M = S \cdot x = 3.50 \times 0.175 = 0.61 \text{ (kN} \cdot \text{m)}$$

(4) 地盤反力度

1) 常 時[載荷重あり]

『 安定計算 』の結果より

$$a_1 = 75.57 \text{ (kN/m}^2)$$

$$q_1 = 75.57 \text{ (kN/m}^2\text{)}$$

 $q_2 = 12.99 \text{ (kN/m}^2\text{)}$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{1_2}{B} = 12.99 + (75.57 - 12.99) \times \frac{0.350}{1.350}$$

= 29.21 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(29.21 + 12.99) \times 0.350 \times 1.000}{2}$$

$$= 7.39 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.350}{3} \times \frac{2 \times 12.99 + 29.21}{12.99 + 29.21}$$
$$= 0.153 \text{ (m)}$$

$$M = S \cdot x = 7.39 \times 0.153 = 1.13 (kN \cdot m)$$

2) 常 時 [載荷重なし]

『 安定計算 』の結果より

$$q_1 = 70.28 \text{ (kN/m}^2\text{)}$$

 $q_2 = 0.95 \text{ (kN/m}^2\text{)}$

$$g_2 = 0.95 \text{ (kN/m}^2\text{)}$$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{1_2}{B} = 0.95 + (70.28 - 0.95) \times \frac{0.350}{1.350}$$

= 18.92 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(18.92 + 0.95) \times 0.350 \times 1.000}{2}$$

$$= 3.48 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.350}{3} \times \frac{2 \times 0.95 + 18.92}{0.95 + 18.92}$$
$$= 0.122 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 3.48 \times 0.122 = 0.42 \text{ (kN} \cdot \text{m)}$$

3) フェンス荷重時「載荷重あり]

『 安定計算 』の結果より

$$a_1 = 80.89 \text{ (kN/m}^2\text{)}$$

$$q_1 = 80.89 (kN/m^2)$$

 $q_2 = 8.55 (kN/m^2)$

かかと版検討位置での地盤反力度

$$q_3 = q_2 + (q_1 - q_2) \cdot \frac{1_2}{B} = 8.55 + (80.89 - 8.55) \times \frac{0.350}{1.350}$$

= 27.30 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot l_2 \cdot L}{2} = \frac{(27.30 + 8.55) \times 0.350 \times 1.000}{2}$$

$$= 6.27 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.350}{3} \times \frac{2 \times 8.55 + 27.30}{8.55 + 27.30}$$
$$= 0.144 \text{ (m)}$$

$$M = S \cdot x = 6.27 \times 0.144 = 0.90 \text{ (kN} \cdot \text{m)}$$

4) フェンス荷重時 [載荷重なし]

$$q_1 = 75.99 (kN/m^2)$$

かかと版検討位置での地盤反力度

$$q_3 = q_1 \cdot \frac{1_2}{B'} = 75.99 \times \frac{0.281}{1.281}$$

$$=$$
 16.67 (kN/m²)

せん断力

$$S = \frac{(q_3 + q_2) \cdot 1_2 \cdot L}{2} = \frac{(16.67 + 0.00) \times 0.281 \times 1.000}{2}$$

$$= 2.34 \text{ (kN)}$$

作用位置

$$x = \frac{1_2}{3} \cdot \frac{2 \cdot q_2 + q_3}{q_2 + q_3} = \frac{0.281}{3} \times \frac{2 \times 0.00 + 16.67}{0.00 + 16.67}$$
$$= 0.094 \text{ (m)}$$

曲げモーメント

$$M = S \cdot x = 2.34 \times 0.094 = 0.22 \text{ (kN} \cdot \text{m)}$$

8.3 設計断面力

かかと版中間部の曲げモーメントは

たて壁つけ根の曲げモーメントを超えないものとする。

(1) 常 時

1) 載荷重あり

		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN·m)
1	かかと版自重	0.61	0. 11
2	かかと版上の載荷土	11. 51	2.01
3	地盤反力	-7. 39	- 1. 13
4	自動車荷重	3. 50	0.61
	合 計 Σ	8. 23	1. 60

2) 載荷重なし

		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN⋅m)
1	かかと版自重	0.61	0.11
2	かかと版上の載荷土	11. 51	2. 01
3	地盤反力	-3. 48	- 0. 42
	合 計 Σ	8. 64	1.70

実応力度計算には、以下の最大断面力を用いる。

せん断力

$$S = 8.64 (kN)$$

$$M = 1.70 \text{ (kN} \cdot \text{m)}$$

(2) フェンス荷重時

1) 載荷重あり

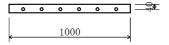
		せん断力	曲げモーメント
No	荷 重 名	S	M
		(kN)	(kN • m)
1	かかと版自重	0. 61	0.11
2	かかと版上の載荷土	11. 51	2.01
3	地盤反力	-6. 27	-0.90
4	自動車荷重	3. 50	0.61
	合 計 Σ	9. 35	1.83

2) 載荷重なし

		せん断力	曲げモーメント
No	荷 重 名	S	M
ļ		(kN)	(kN·m)
1	かかと版自重	0.61	0. 11
2	かかと版上の載荷土	11. 51	2. 01
3	地盤反力	-2. 34	-0. 22
	合 計 Σ	9. 78	1. 90

実応力度計算には、以下の最大断面力を用いる。

せん断力


S = 9.78 (kN)

曲げモーメント

 $M = 1.90 (kN \cdot m)$

8.4 実応力度の計算

単鉄筋長方形断面で計算を行う。

コンクリートに対する鉄筋のヤング係数比 n = 15

中 立 軸

$$x = \frac{n \cdot As}{b} \cdot \left\{ -1 + \sqrt{1 + \frac{2 \cdot b \cdot d}{n \cdot As}} \right\}$$

$$= \frac{15 \times 824}{1000} \times \left\{ -1 + \sqrt{1 + \frac{2 \times 1000 \times 40}{15 \times 824}} \right\}$$

$$= 21.4 \text{ (mm)}$$

実応力度は以下の式により求める。

コンクリートの曲げ圧縮応力度

$$\sigma c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})}$$

鉄筋の曲げ引張応力度

$$\sigma_{S} = \frac{M}{\text{As} \cdot \left(d - \frac{X}{3}\right)}$$

コンクリートのせん断応力度

$$\tau = \frac{S}{b \cdot d}$$

ここに、

b : 断面の有効幅 (mm) M : 曲げモーメント(N・mm) d : 断面の有効高さ (mm) S : せん断力 (N)

As : 鉄筋量 (mm²)

項 目 常時 フェンス荷重時 曲げモーメント 断 1.70×10^{6} 1.90×10^{6} $M (N \cdot mm)$ 面 せん断力 力 8.64×10^{3} 9.78×10^{3} S (N) コンクリートの 4.83 5.40 曲げ圧縮応力度 (N/mm^2) 10.00 12.00 σca 鉄筋の 62.8 70.2 σ s 曲げ引張応力度 (N/mm^2) σsa 160 192 コンクリートの 0.22 0.24 τ せん断応力度 (N/mm^2) 0.45 0.54 τ ca